Combining Philosophers

All the ideas for Douglas Lackey, Dag Prawitz and Richard G. Heck

unexpand these ideas     |    start again     |     specify just one area for these philosophers


18 ideas

5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is based on transitions between sentences [Prawitz]
     Full Idea: I agree entirely with Dummett that the right way to answer the question 'what is logic?' is to consider transitions between sentences.
     From: Dag Prawitz (Gentzen's Analysis of First-Order Proofs [1974], §04)
     A reaction: I always protest at this point that reliance on sentences is speciesism against animals, who are thereby debarred from reasoning. See the wonderful Idea 1875 of Chrysippus. Hacking's basic suggestion seems right. Transition between thoughts.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence isn't a black box (Tarski's approach); we should explain how arguments work [Prawitz]
     Full Idea: Defining logical consequence in the way Tarski does is a rather meagre result, treating an argument as a black box, observing input and output, while disregarding inner structure. We should define logical consequence on the basis of valid arguments.
     From: Dag Prawitz (On the General Idea of Proof Theory [1974], §2)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Natural deduction introduction rules may represent 'definitions' of logical connectives [Prawitz]
     Full Idea: With Gentzen's natural deduction, we may say that the introductions represent, as it were, the 'definitions' of the logical constants. The introductions are not literally understood as 'definitions'.
     From: Dag Prawitz (Gentzen's Analysis of First-Order Proofs [1974], 2.2.2)
     A reaction: [Hacking, in 'What is Logic? §9' says Gentzen had the idea that his rules actually define the constants; not sure if Prawitz and Hacking are disagreeing]
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
In natural deduction, inferences are atomic steps involving just one logical constant [Prawitz]
     Full Idea: In Gentzen's natural deduction, the inferences are broken down into atomic steps in such a way that each step involves only one logical constant. The steps are the introduction or elimination of the logical constants.
     From: Dag Prawitz (Gentzen's Analysis of First-Order Proofs [1974], 1.1)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory looks at valid sentences and consequence, but not how we know these things [Prawitz]
     Full Idea: In model theory, which has dominated the last decades, one concentrates on logically valid sentences, and what follows logically from what, but one disregards questions concerning how we know these things.
     From: Dag Prawitz (On the General Idea of Proof Theory [1974], §1)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Sets always exceed terms, so all the sets must exceed all the sets [Lackey]
     Full Idea: Cantor proved that the number of sets in a collection of terms is larger than the number of terms. Hence Cantor's Paradox says the number of sets in the collection of all sets must be larger than the number of sets in the collection of all sets.
     From: Douglas Lackey (Intros to Russell's 'Essays in Analysis' [1973], p.127)
     A reaction: The sets must count as terms in the next iteration, but that is a normal application of the Power Set axiom.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
It seems that the ordinal number of all the ordinals must be bigger than itself [Lackey]
     Full Idea: The ordinal series is well-ordered and thus has an ordinal number, and a series of ordinals to a given ordinal exceeds that ordinal by 1. So the series of all ordinals has an ordinal number that exceeds its own ordinal number by 1.
     From: Douglas Lackey (Intros to Russell's 'Essays in Analysis' [1973], p.127)
     A reaction: Formulated by Burali-Forti in 1897.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
The meaning of a number isn't just the numerals leading up to it [Heck]
     Full Idea: My knowing what the number '33' denotes cannot consist in my knowing that it denotes the number of decimal numbers between '1' and '33', because I would know that even if it were in hexadecimal (which I don't know well).
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: Obviously you wouldn't understand '33' if you didn't understand what '33 things' meant.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A basic grasp of cardinal numbers needs an understanding of equinumerosity [Heck]
     Full Idea: An appreciation of the connection between sameness of number and equinumerosity that it reports is essential to even the most primitive grasp of the concept of cardinal number.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
In counting, numerals are used, not mentioned (as objects that have to correlated) [Heck]
     Full Idea: One need not conceive of the numerals as objects in their own right in order to count. The numerals are not mentioned in counting (as objects to be correlated with baseball players), but are used.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 3)
     A reaction: He observes that when you name the team, you aren't correlating a list of names with the players. I could correlate any old tags with some objects, and you could tell me the cardinality denoted by the last tag. I do ordinals, you do cardinals.
Is counting basically mindless, and independent of the cardinality involved? [Heck]
     Full Idea: I am not denying that counting can be done mindlessly, without making judgments of cardinality along the way. ...But the question is whether counting is, as it were, fundamentally a mindless exercise.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: He says no. It seems to me like going on a journey, where you can forget where you are going and where you have got to so far, but those underlying facts are always there. If you just tag things with unknown foreign numbers, you aren't really counting.
Counting is the assignment of successively larger cardinal numbers to collections [Heck]
     Full Idea: Counting is not mere tagging: it is the successive assignment of cardinal numbers to increasingly large collections of objects.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: That the cardinals are 'successive' seems to mean that they are ordinals as well. If you don't know that 'seven' means a cardinality, as well as 'successor of six', you haven't understood it. Days of the week have successors. Does PA capture cardinality?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
Understanding 'just as many' needn't involve grasping one-one correspondence [Heck]
     Full Idea: It is far from obvious that knowing what 'just as many' means requires knowing what a one-one correspondence is. The notion of a one-one correspondence is very sophisticated, and it is far from clear that five-year-olds have any grasp of it.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 4)
     A reaction: The point is that children decide 'just as many' by counting each group and arriving at the same numeral, not by matching up. He cites psychological research by Gelman and Galistel.
We can know 'just as many' without the concepts of equinumerosity or numbers [Heck]
     Full Idea: 'Just as many' is independent of the ability to count, and we shouldn't characterise equinumerosity through counting. It is also independent of the concept of number. Enough cookies to go round doesn't need how many cookies.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 4)
     A reaction: [compressed] He talks of children having an 'operational' ability which is independent of these more sophisticated concepts. Interesting. You see how early man could relate 'how many' prior to the development of numbers.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Frege's Theorem explains why the numbers satisfy the Peano axioms [Heck]
     Full Idea: The interest of Frege's Theorem is that it offers us an explanation of the fact that the numbers satisfy the Dedekind-Peano axioms.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
     A reaction: He says 'explaining' does not make it more fundamental, since all proofs explain why their conclusions hold.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Children can use numbers, without a concept of them as countable objects [Heck]
     Full Idea: For a long time my daughter had no understanding of the question of how many numerals or numbers there are between 'one' and 'five'. I think she lacked the concept of numerals as objects which can themselves be counted.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: I can't make any sense of numbers actually being objects, though clearly treating all sorts of things as objects helps thinking (as in 'the victory is all that matters').
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Equinumerosity is not the same concept as one-one correspondence [Heck]
     Full Idea: Equinumerosity is not the same concept as being in one-one correspondence with.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
     A reaction: He says this is the case, even if they are coextensive, like renate and cordate. You can see that five loaves are equinumerous with five fishes, without doing a one-one matchup.
We can understand cardinality without the idea of one-one correspondence [Heck]
     Full Idea: One can have a perfectly serviceable concept of cardinality without so much as having the concept of one-one correspondence.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 3)
     A reaction: This is the culmination of a lengthy discussion. It includes citations about the psychology of children's counting. Cardinality needs one group of things, and 1-1 needs two groups.