Combining Philosophers

All the ideas for Douglas Lackey, Dag Prawitz and Sarah Sawyer

unexpand these ideas     |    start again     |     specify just one area for these philosophers


12 ideas

5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is based on transitions between sentences [Prawitz]
     Full Idea: I agree entirely with Dummett that the right way to answer the question 'what is logic?' is to consider transitions between sentences.
     From: Dag Prawitz (Gentzen's Analysis of First-Order Proofs [1974], §04)
     A reaction: I always protest at this point that reliance on sentences is speciesism against animals, who are thereby debarred from reasoning. See the wonderful Idea 1875 of Chrysippus. Hacking's basic suggestion seems right. Transition between thoughts.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence isn't a black box (Tarski's approach); we should explain how arguments work [Prawitz]
     Full Idea: Defining logical consequence in the way Tarski does is a rather meagre result, treating an argument as a black box, observing input and output, while disregarding inner structure. We should define logical consequence on the basis of valid arguments.
     From: Dag Prawitz (On the General Idea of Proof Theory [1974], §2)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Natural deduction introduction rules may represent 'definitions' of logical connectives [Prawitz]
     Full Idea: With Gentzen's natural deduction, we may say that the introductions represent, as it were, the 'definitions' of the logical constants. The introductions are not literally understood as 'definitions'.
     From: Dag Prawitz (Gentzen's Analysis of First-Order Proofs [1974], 2.2.2)
     A reaction: [Hacking, in 'What is Logic? §9' says Gentzen had the idea that his rules actually define the constants; not sure if Prawitz and Hacking are disagreeing]
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
Semantic theory should specify when an act of naming is successful [Sawyer]
     Full Idea: A semantic theory of names should deliver a specification of the conditions under which a name names an individual, and hence a specification of the conditions under which a name is empty.
     From: Sarah Sawyer (Empty Names [2012], 1)
     A reaction: Naming can be private, like naming my car 'Bertrand', but never tell anyone. I like Plato's remark that names are 'tools'. Do we specify conditions for successful spanner-usage? The first step must be individuation, preparatory to naming.
5. Theory of Logic / F. Referring in Logic / 1. Naming / c. Names as referential
Millians say a name just means its object [Sawyer]
     Full Idea: The Millian view of direct reference says that the meaning of a name is the object named.
     From: Sarah Sawyer (Empty Names [2012], 4)
     A reaction: Any theory that says meaning somehow is features of the physical world strikes me as totally misguided. Napoleon is a man, so he can't be part of a sentence. He delegates that job to words (such as 'Napoleon').
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
Sentences with empty names can be understood, be co-referential, and even be true [Sawyer]
     Full Idea: Some empty names sentences can be understood, so appear to be meaningful ('Pegasus was sired by Poseidon'), ...some appear to be co-referential ('Santa Claus'/'Father Christmas'), and some appear to be straightforwardly true ('Pegasus doesn't exist').
     From: Sarah Sawyer (Empty Names [2012], 1)
     A reaction: Hang on to this, when the logicians arrive and start telling you that your talk of empty names is vacuous, because there is no object in the 'domain' to which a predicate can be attached. Meaning, reference and truth are the issues around empty names.
Frege's compositional account of truth-vaues makes 'Pegasus doesn't exist' neither true nor false [Sawyer]
     Full Idea: In Frege's account sentences such as 'Pegasus does not exist' will be neither true nor false, since the truth-value of a sentence is its referent, and the referent of a complex expression is determined by the referent of its parts.
     From: Sarah Sawyer (Empty Names [2012], 2)
     A reaction: We can keep the idea of 'sense', which is very useful for dealing with empty names, but tweak his account of truth-values to evade this problem. I'm thinking that meaning is compositional, but truth-value isn't.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Definites descriptions don't solve the empty names problem, because the properties may not exist [Sawyer]
     Full Idea: If it were possible for a definite description to be empty - not in the sense of there being no object that satisfies it, but of there being no set of properties it refers to - the problem of empty names would not have been solved.
     From: Sarah Sawyer (Empty Names [2012], 5)
     A reaction: Swoyer is thinking of properties like 'is a unicorn', which are clearly just as vulnerable to being empty as 'the unicorn' was. It seems unlikely that 'horse', 'white' and 'horn' would be empty.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
In natural deduction, inferences are atomic steps involving just one logical constant [Prawitz]
     Full Idea: In Gentzen's natural deduction, the inferences are broken down into atomic steps in such a way that each step involves only one logical constant. The steps are the introduction or elimination of the logical constants.
     From: Dag Prawitz (Gentzen's Analysis of First-Order Proofs [1974], 1.1)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory looks at valid sentences and consequence, but not how we know these things [Prawitz]
     Full Idea: In model theory, which has dominated the last decades, one concentrates on logically valid sentences, and what follows logically from what, but one disregards questions concerning how we know these things.
     From: Dag Prawitz (On the General Idea of Proof Theory [1974], §1)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Sets always exceed terms, so all the sets must exceed all the sets [Lackey]
     Full Idea: Cantor proved that the number of sets in a collection of terms is larger than the number of terms. Hence Cantor's Paradox says the number of sets in the collection of all sets must be larger than the number of sets in the collection of all sets.
     From: Douglas Lackey (Intros to Russell's 'Essays in Analysis' [1973], p.127)
     A reaction: The sets must count as terms in the next iteration, but that is a normal application of the Power Set axiom.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
It seems that the ordinal number of all the ordinals must be bigger than itself [Lackey]
     Full Idea: The ordinal series is well-ordered and thus has an ordinal number, and a series of ordinals to a given ordinal exceeds that ordinal by 1. So the series of all ordinals has an ordinal number that exceeds its own ordinal number by 1.
     From: Douglas Lackey (Intros to Russell's 'Essays in Analysis' [1973], p.127)
     A reaction: Formulated by Burali-Forti in 1897.