Combining Philosophers

All the ideas for Douglas Lackey, Mark Colyvan and Julia Annas

unexpand these ideas     |    start again     |     specify just one area for these philosophers


35 ideas

1. Philosophy / C. History of Philosophy / 2. Ancient Philosophy / b. Pre-Socratic philosophy
Xenophanes began the concern with knowledge [Annas]
     Full Idea: Xenophanes begins a long concern with knowledge and its grounds.
     From: Julia Annas (Ancient Philosophy: very short introduction [2000], Intro)
     A reaction: Having that on his cv ought to make Xenophanes more famous than he is.
1. Philosophy / C. History of Philosophy / 2. Ancient Philosophy / c. Classical philosophy
Plato was the first philosopher who was concerned to systematize his ideas [Annas]
     Full Idea: In the ancient world Plato was seen as a pivotal figure, the first philosopher who was concerned to systematize his ideas.
     From: Julia Annas (Ancient Philosophy: very short introduction [2000], Ch.6)
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Rejecting double negation elimination undermines reductio proofs [Colyvan]
     Full Idea: The intuitionist rejection of double negation elimination undermines the important reductio ad absurdum proof in classical mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
     Full Idea: In intuitionist logic double negation elimination fails. After all, proving that there is no proof that there can't be a proof of S is not the same thing as having a proof of S.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: I do like people like Colyvan who explain things clearly. All of this difficult stuff is understandable, if only someone makes the effort to explain it properly.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
     Full Idea: The law of excluded middle (for every proposition P, either P or not-P) must be carefully distinguished from its semantic counterpart bivalence, that every proposition is either true or false.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: So excluded middle makes no reference to the actual truth or falsity of P. It merely says P excludes not-P, and vice versa.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
     Full Idea: A set of axioms is said to be 'categorical' if all models of the axioms in question are isomorphic.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
     A reaction: The best example is the Peano Axioms, which are 'true up to isomorphism'. Set theory axioms are only 'quasi-isomorphic'.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Sets always exceed terms, so all the sets must exceed all the sets [Lackey]
     Full Idea: Cantor proved that the number of sets in a collection of terms is larger than the number of terms. Hence Cantor's Paradox says the number of sets in the collection of all sets must be larger than the number of sets in the collection of all sets.
     From: Douglas Lackey (Intros to Russell's 'Essays in Analysis' [1973], p.127)
     A reaction: The sets must count as terms in the next iteration, but that is a normal application of the Power Set axiom.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
It seems that the ordinal number of all the ordinals must be bigger than itself [Lackey]
     Full Idea: The ordinal series is well-ordered and thus has an ordinal number, and a series of ordinals to a given ordinal exceeds that ordinal by 1. So the series of all ordinals has an ordinal number that exceeds its own ordinal number by 1.
     From: Douglas Lackey (Intros to Russell's 'Essays in Analysis' [1973], p.127)
     A reaction: Formulated by Burali-Forti in 1897.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
     Full Idea: Ordinal numbers represent order relations.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.2.3 n17)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
     Full Idea: For intuitionists, all but the smallest, most well-behaved infinities are rejected.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: The intuitionist idea is to only accept what can be clearly constructed or proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
     Full Idea: The problem with infinitesimals is that in some places they behaved like real numbers close to zero but in other places they behaved like zero.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.2)
     A reaction: Colyvan gives an example, of differentiating a polynomial.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
     Full Idea: Given Dedekind's reduction of real numbers to sequences of rational numbers, and other known reductions in mathematics, it was tempting to see basic arithmetic as the foundation of mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.1)
     A reaction: The reduction is the famous Dedekind 'cut'. Nowadays theorists seem to be more abstract (Category Theory, for example) instead of reductionist.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
     Full Idea: Transfinite inductions are inductive proofs that include an extra step to show that if the statement holds for all cases less than some limit ordinal, the statement also holds for the limit ordinal.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1 n11)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
     Full Idea: Most mathematical proofs, outside of set theory, do not explicitly state the set theory being employed.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
     Full Idea: Structuralism is able to explain why mathematicians are typically only interested in describing the objects they study up to isomorphism - for that is all there is to describe.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
     Full Idea: In re structuralism does not posit anything other than the kinds of structures that are in fact found in the world. ...The problem is that the world may not provide rich enough structures for the mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
     A reaction: You can perceive a repeating pattern in the world, without any interest in how far the repetitions extend.
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
     Full Idea: Those who see probabilities as ratios of frequencies can't use Bayes's Theorem if there is no objective prior probability. Those who accept prior probabilities tend to opt for a subjectivist account, where probabilities are degrees of belief.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.8)
     A reaction: [compressed]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
     Full Idea: Mathematics can demonstrate structural similarities between systems (e.g. missing population periods and the gaps in the rings of Saturn).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
     A reaction: [Colyvan expounds the details of his two examples] It is these sorts of results that get people enthusiastic about the mathematics embedded in nature. A misunderstanding, I think.
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
     Full Idea: Mathematics can show that under a broad range of conditions, something initially surprising must occur (e.g. the hexagonal structure of honeycomb).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
     Full Idea: Another style of proof often cited as unexplanatory are brute-force methods such as proof by cases (or proof by exhaustion).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
Reductio proofs do not seem to be very explanatory [Colyvan]
     Full Idea: One kind of proof that is thought to be unexplanatory is the 'reductio' proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: Presumably you generate a contradiction, but are given no indication of why the contradiction has arisen? Tracking back might reveal the source of the problem? Colyvan thinks reductio can be explanatory.
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
     Full Idea: It might be argued that any proof by induction is revealing the explanation of the theorem, namely, that it holds by virtue of the structure of the natural numbers.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: This is because induction characterises the natural numbers, in the Peano Axioms.
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
     Full Idea: The proof of the four-colour theorem raises questions about whether a 'proof' that no one understands is a proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.6)
     A reaction: The point is that the theorem (that you can colour countries on a map with just four colours) was proved with the help of a computer.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
     Full Idea: One type of generalisation in mathematics extends a system to go beyond what is was originally set up for; another kind involves abstracting away from some details in order to capture similarities between different systems.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.2)
20. Action / C. Motives for Action / 3. Acting on Reason / a. Practical reason
'Phronesis' should translate as 'practical intelligence', not as prudence [Annas]
     Full Idea: The best translation of 'phronesis' is probably not 'prudence' (which implies a non-moral motive), or 'practical wisdom' (which makes it sound contemplative), but 'practical intelligence', or just 'intelligence'.
     From: Julia Annas (The Morality of Happiness [1993], 2.3)
22. Metaethics / A. Ethics Foundations / 2. Source of Ethics / b. Rational ethics
Euripides's Medea is a key case of reason versus the passions [Annas]
     Full Idea: Euripides's Medea has remained a key case for discussion of reason and the passions.
     From: Julia Annas (Ancient Philosophy: very short introduction [2000], Ch.1)
22. Metaethics / C. The Good / 3. Pleasure / d. Sources of pleasure
Epicureans achieve pleasure through character development [Annas]
     Full Idea: Since having a virtue does not reduce to performing certain kinds of acts, the Epicurean will achieve pleasure only by aiming at being a certain kind of person.
     From: Julia Annas (The Morality of Happiness [1993], 2.4)
     A reaction: No Epicurean would want to merely possess virtues, without enacting them. I assume that virtues are sought as guides to finding the finest pleasures (such as friendship).
23. Ethics / A. Egoism / 3. Cyrenaic School
Cyrenaics pursue pleasure, but don't equate it with happiness [Annas]
     Full Idea: Cyrenaics claimed our final good was pleasure, best achieved by seeking maximum intensity of pleasurable experiences, but they explicitly admitted that this was not happiness.
     From: Julia Annas (The Morality of Happiness [1993], 1)
23. Ethics / C. Virtue Theory / 1. Virtue Theory / a. Nature of virtue
Virtue is a kind of understanding of moral value [Annas]
     Full Idea: There is a widespread view in ancient ethics that virtue is a kind of understanding of moral value.
     From: Julia Annas (Ancient Philosophy: very short introduction [2000], Ch.3)
     A reaction: In Aristotle's case, this coincides with his apparent view that 'understanding' is the aim of all areas of human thought. See Idea 12038.
23. Ethics / C. Virtue Theory / 2. Elements of Virtue Theory / c. Motivation for virtue
Ancient ethics uses attractive notions, not imperatives [Annas]
     Full Idea: Instead of modern 'imperative' notions of ethics (involving obligation, duty and rule-following), ancient ethics uses 'attractive' notions like those of goodness and worth
     From: Julia Annas (The Morality of Happiness [1993], Intro)
23. Ethics / D. Deontological Ethics / 1. Deontology
Principles cover life as a whole, where rules just cover actions [Annas]
     Full Idea: Principles concern not just types of actions, but one's life as a whole, grasping truths about the nature of justice, and the like; they explain rules, giving the 'why' and not just the 'what'.
     From: Julia Annas (The Morality of Happiness [1993], 2.4)
23. Ethics / D. Deontological Ethics / 2. Duty
Virtue theory tries to explain our duties in terms of our character [Annas]
     Full Idea: An ethics of virtue moves from an initial interest in what we ought to do to an interest in the kinds of people we are and hope to be, because the latter is taken to be the best way of understanding the former.
     From: Julia Annas (The Morality of Happiness [1993], 2.5)
23. Ethics / D. Deontological Ethics / 6. Motivation for Duty
If excessively good actions are admirable but not required, then duty isn't basic [Annas]
     Full Idea: Supererogatory actions are admirable and valuable, and we praise people for doing them, but they do not generate obligations to perform them, which casts doubt on obligation as the basic notion in ethics.
     From: Julia Annas (The Morality of Happiness [1993], 2.6)
23. Ethics / E. Utilitarianism / 1. Utilitarianism
We should do good when necessary, not maximise it [Annas]
     Full Idea: Why should I want to maximise my acting courageously? I act courageously when it is required.
     From: Julia Annas (The Morality of Happiness [1993], 1)