Combining Philosophers

All the ideas for Douglas Lackey, Terence Parsons and Nicholas Jolley

unexpand these ideas     |    start again     |     specify just one area for these philosophers


4 ideas

5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Sets always exceed terms, so all the sets must exceed all the sets [Lackey]
     Full Idea: Cantor proved that the number of sets in a collection of terms is larger than the number of terms. Hence Cantor's Paradox says the number of sets in the collection of all sets must be larger than the number of sets in the collection of all sets.
     From: Douglas Lackey (Intros to Russell's 'Essays in Analysis' [1973], p.127)
     A reaction: The sets must count as terms in the next iteration, but that is a normal application of the Power Set axiom.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
It seems that the ordinal number of all the ordinals must be bigger than itself [Lackey]
     Full Idea: The ordinal series is well-ordered and thus has an ordinal number, and a series of ordinals to a given ordinal exceeds that ordinal by 1. So the series of all ordinals has an ordinal number that exceeds its own ordinal number by 1.
     From: Douglas Lackey (Intros to Russell's 'Essays in Analysis' [1973], p.127)
     A reaction: Formulated by Burali-Forti in 1897.
9. Objects / A. Existence of Objects / 4. Impossible objects
There is an object for every set of properties (some of which exist, and others don't) [Parsons,T, by Sawyer]
     Full Idea: According to Terence Parsons, there is an object corresponding to every set of properties. To some of those sets of properties there corresponds an object that exists, and to others there corresponds an object that does not exist (a nonexistent object).
     From: report of Terence Parsons (Nonexistent Objects [1980]) by Sarah Sawyer - Empty Names 5
     A reaction: This I take to be the main source of the modern revival of Meinong's notorious view of objects (attacked by Russell). I always find the thought 'a round square is square' to be true, and in need of a truthmaker. But must a round square be non-triangular?
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Identity of Indiscernibles is really the same as the verification principle [Jolley]
     Full Idea: Various writers have noted that the Identity of Indiscernibles is really tantamount to the verification principle.
     From: Nicholas Jolley (Leibniz [2005], Ch.3)
     A reaction: Both principles are false, because they are the classic confusion of epistemology and ontology. The fact that you cannot 'discern' a difference between two things doesn't mean that there is no difference. Things beyond verification can still be discussed.