Combining Philosophers

All the ideas for E Margolis/S Laurence, George Cantor and G.H. von Wright

unexpand these ideas     |    start again     |     specify just one area for these philosophers


79 ideas

1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Naturalistic philosophers oppose analysis, preferring explanation to a priori intuition [Margolis/Laurence]
     Full Idea: Philosophers who oppose conceptual analysis identify their approach as being 'naturalistic'. Philosophy is supposed to be continuous with science, and philosophical theories are to be defended on explanatory grounds, not by a priori intuitions.
     From: E Margolis/S Laurence (Concepts [2009], 5.2)
     A reaction: [They cite Papineau 1993, Devitt 1996 aand Kornblith 2002] I think there is a happy compromise here. I agree that any philosophical knowledge should be continuous with science, but we shouldn't prejudge how the analytic branch of science is done.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
Cantor developed sets from a progression into infinity by addition, multiplication and exponentiation [Cantor, by Lavine]
     Full Idea: Cantor's development of set theory began with his discovery of the progression 0, 1, ....∞, ∞+1, ∞+2, ..∞x2, ∞x3, ...∞^2, ..∞^3, ...∞^∞, ...∞^∞^∞.....
     From: report of George Cantor (Grundlagen (Foundations of Theory of Manifolds) [1883]) by Shaughan Lavine - Understanding the Infinite VIII.2
A set is a collection into a whole of distinct objects of our intuition or thought [Cantor]
     Full Idea: A set is any collection into a whole M of definite, distinct objects m ... of our intuition or thought.
     From: George Cantor (The Theory of Transfinite Numbers [1897], p.85), quoted by James Robert Brown - Philosophy of Mathematics Ch.2
     A reaction: This is the original conception of a set, which hit trouble with Russell's Paradox. Cantor's original definition immediately invites thoughts about the status of vague objects.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Cantor gives informal versions of ZF axioms as ways of getting from one set to another [Cantor, by Lake]
     Full Idea: Cantor gives informal versions of the axioms of ZF as ways of getting from one set to another.
     From: report of George Cantor (Later Letters to Dedekind [1899]) by John Lake - Approaches to Set Theory 1.6
     A reaction: Lake suggests that it should therefore be called CZF.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
Ordinals are generated by endless succession, followed by a limit ordinal [Cantor, by Lavine]
     Full Idea: Ordinal numbers are generated by two principles: each ordinal has an immediate successor, and each unending sequence has an ordinal number as its limit (that is, an ordinal that is next after such a sequence).
     From: report of George Cantor (Grundlagen (Foundations of Theory of Manifolds) [1883]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
Cantor needed Power Set for the reals, but then couldn't count the new collections [Cantor, by Lavine]
     Full Idea: Cantor grafted the Power Set axiom onto his theory when he needed it to incorporate the real numbers, ...but his theory was supposed to be theory of collections that can be counted, but he didn't know how to count the new collections.
     From: report of George Cantor (The Theory of Transfinite Numbers [1897]) by Shaughan Lavine - Understanding the Infinite I
     A reaction: I take this to refer to the countability of the sets, rather than the members of the sets. Lavine notes that counting was Cantor's key principle, but he now had to abandon it. Zermelo came to the rescue.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The 'extension of a concept' in general may be quantitatively completely indeterminate [Cantor]
     Full Idea: The author entirely overlooks the fact that the 'extension of a concept' in general may be quantitatively completely indeterminate. Only in certain cases is the 'extension of a concept' quantitatively determinate.
     From: George Cantor (Review of Frege's 'Grundlagen' [1885], 1932:440), quoted by William W. Tait - Frege versus Cantor and Dedekind
     A reaction: Cantor presumably has in mind various infinite sets. Tait is drawing our attention to the fact that this objection long precedes Russell's paradox, which made the objection more formal (a language Frege could understand!).
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
10. Modality / B. Possibility / 1. Possibility
What is true used to be possible, but it may no longer be so [Wright,GHv]
     Full Idea: It is not very natural to say of that which is true that it is also possible. ...What is true was possible - but whether it still is a potency of the world is not certain.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §5)
     A reaction: A simple and rather important distinction. Before encountering this, I would certainly have been happy to affirm that the actual is possible, but actually it may not be. The power to create differs from the power to sustain. Could God re-create the world?
12. Knowledge Sources / D. Empiricism / 2. Associationism
Modern empiricism tends to emphasise psychological connections, not semantic relations [Margolis/Laurence]
     Full Idea: A growing number of philosophers are attracted to modified forms of empiricism, emphasizing psychological relations between the conceptual system and perceptual and motor states, not semantic relations.
     From: E Margolis/S Laurence (Concepts [2009], 3.2)
     A reaction: I suddenly spot that this is what I have been drifting towards for some time! The focus is concept formation, where the philosophers need to join forces with the cognitive scientists.
17. Mind and Body / E. Mind as Physical / 1. Physical Mind
Body-type seems to affect a mind's cognition and conceptual scheme [Margolis/Laurence]
     Full Idea: It is claimed, on the basis of empirical research, that the type of body that an organism has profoundly affects it cognitive operations and the way it conceptualises the world. We can't assume that human minds could inhere in wildly different body types.
     From: E Margolis/S Laurence (Concepts [2009], 3.2)
     A reaction: Sounds interesting. They cite Lawrence Shapiro 2004. It needs a large effort of imagination to think how a snake or whale or albatross might conceptualise the world, in relation to their bodies.
18. Thought / B. Mechanics of Thought / 4. Language of Thought
Language of thought has subject/predicate form and includes logical devices [Margolis/Laurence]
     Full Idea: The language of thought is taken to have subject/predicate form and include logical devices, such as quantifiers and variables.
     From: E Margolis/S Laurence (Concepts [2009], 1.1)
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
Concepts are either representations, or abilities, or Fregean senses [Margolis/Laurence]
     Full Idea: The three main options for the ontological status of concepts are to identify them with mental representations, or with abilities, or with Fregean senses.
     From: E Margolis/S Laurence (Concepts [2009], 1)
18. Thought / D. Concepts / 3. Ontology of Concepts / a. Concepts as representations
A computer may have propositional attitudes without representations [Margolis/Laurence]
     Full Idea: It may be possible to have propositional attitudes without having the mental representations tokened in one's head. ...We may say a chess-playing computer thinks it should develop its queen early, though we know it has no representation with that content.
     From: E Margolis/S Laurence (Concepts [2009], 1.1)
     A reaction: [Thye cite Dennett - who talks of the 'intentional stance'] It is, of course, a moot point whether we would attribute a propositional attitude (such as belief) to a machine once we knew that it wasn't representing the relevant concepts.
Do mental representations just lead to a vicious regress of explanations [Margolis/Laurence]
     Full Idea: A standard criticism is that the mental representation view of concepts creates just another item whose significance bears explaining. Either we have a vicious regress, or we might as well explain external language directly.
     From: E Margolis/S Laurence (Concepts [2009], 1.2)
     A reaction: [They cite Dummett, with Wittgenstein in the background] I don't agree, because I think that explanation of concepts only stops when it dovetails into biology.
18. Thought / D. Concepts / 3. Ontology of Concepts / b. Concepts as abilities
Maybe the concept CAT is just the ability to discriminate and infer about cats [Margolis/Laurence]
     Full Idea: The view that concepts are abilities (e.g. found in Brandom, Dummett and Millikan) would say that the concept CAT amounts to the ability to discriminate cats from non-cats and to draw certain inferences about cats.
     From: E Margolis/S Laurence (Concepts [2009], 1.2)
     A reaction: Feels wrong. The concept is what makes these abilities possible, but it seems rather behaviourist to identify the concept with what is enabled by the concept. You might understand 'cat', but fail to recognise your first cat (though you might suspect it).
The abilities view cannot explain the productivity of thought, or mental processes [Margolis/Laurence]
     Full Idea: The abilities view of concepts, by its rejection of mental representation, is ill-equipped to explain the productivity of thought; and it can say little about mental processes.
     From: E Margolis/S Laurence (Concepts [2009], 1.2)
     A reaction: The latter point arises from its behaviouristic character, which just gives us a black box with some output of abilities. In avoiding a possible regress, it offers no explanation at all.
18. Thought / D. Concepts / 4. Structure of Concepts / a. Conceptual structure
Concept-structure explains typicality, categories, development, reference and composition [Margolis/Laurence]
     Full Idea: The structures of concepts are invoked to explain typicality effects, reflective categorization, cognitive development, reference determination, and compositionality.
     From: E Margolis/S Laurence (Concepts [2009], 2.5)
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
Classically, concepts give necessary and sufficient conditions for falling under them [Margolis/Laurence]
     Full Idea: The classical theory is that a concept has a definitional structure in that it is composed of simpler concepts that express necessary and sufficient conditions for falling under the concept, the stock example being unmarried and a man for 'bachelor'.
     From: E Margolis/S Laurence (Concepts [2009], 2.1)
     A reaction: This is the background idea to philosophy as analysis, and it makes concepts essentially referential, in that they are defined by their ability to pick things out. There must be some degree of truth in the theory.
Typicality challenges the classical view; we see better fruit-prototypes in apples than in plums [Margolis/Laurence]
     Full Idea: The classical view is challenged by the discovery that certain categories are taken to be more typical, with typicality widely correlating with other data. Apples are judged to be more typical of (and have more common features with) fruit than plums are.
     From: E Margolis/S Laurence (Concepts [2009], 2.1)
     A reaction: This discovery that people use prototypes in thinking has been the biggest idea to ever hit the philosophy of concepts, and simply cannot be ignored (as long as the research keeps reinforcing it, which I believe it does). The classical view might adapt.
The classical theory explains acquisition, categorization and reference [Margolis/Laurence]
     Full Idea: The appeal of the classical theory of concepts is that it offers unified treatments of concept acquisition (assembling constituents), categorization (check constituents against target), and reference determination (whether they apply).
     From: E Margolis/S Laurence (Concepts [2009], 2.1)
     A reaction: [See Idea 11128 for the theory] As so often, I find myself in sympathy with the traditional view which has been relegated to ignominy by our wonderful modern philosophers.
It may be that our concepts (such as 'knowledge') have no definitional structure [Margolis/Laurence]
     Full Idea: In the light of problems such as the definition of knowledge, many philosophers now take seriously the possibility that our concepts lack definitional structure.
     From: E Margolis/S Laurence (Concepts [2009], 2.1)
     A reaction: This challenges the classical view, that there are precise conditions for each concept. That view would obviously be in difficulties with atomic concepts, so our account of those might be applied all the way up.
18. Thought / D. Concepts / 4. Structure of Concepts / d. Concepts as prototypes
The prototype theory is probabilistic, picking something out if it has sufficient of the properties [Margolis/Laurence]
     Full Idea: In the prototype theory of concepts, a lexical concept has probabilistic structure in that something falls under it if it satisfies a sufficient number of properties encoded by the constituents. It originates in Wittgenstein's 'family resemblance'.
     From: E Margolis/S Laurence (Concepts [2009], 2.2)
     A reaction: It would seem unlikely to be a matter of the 'number' of properties, and would have to involve some notion of what was essential to the prototype.
Prototype theory categorises by computing the number of shared constituents [Margolis/Laurence]
     Full Idea: On the prototype theory, categorization is to be understood as a similarity comparison process, where similarity is computed as a function of the number of constituents that two concepts hold in common.
     From: E Margolis/S Laurence (Concepts [2009], 2.2)
     A reaction: Again it strikes me that 'computing' similarity by mere 'number' of shared constituents won't do, as there is a prior judgement about which constituents really matter, or are essential. That may even be hard-wired.
People don't just categorise by apparent similarities [Margolis/Laurence]
     Full Idea: When it comes to more reflexive judgements, people go beyond the outcome of a similarity comparison. Even children say that a dog surgically altered to look like a raccoon is still a dog.
     From: E Margolis/S Laurence (Concepts [2009], 2.2)
     A reaction: We can defend the theory by not underestimating people so much. Most categorisation is done on superficial grounds, but even children know there may be hidden similarities (behind the mask, under the bonnet) which are more important.
Complex concepts have emergent properties not in the ingredient prototypes [Margolis/Laurence]
     Full Idea: An objection to the prototype view concerns compositionality. A complex concept often has emergent properties, as when it seems that 'pet fish' encodes for brightly coloured, which has no basis in the prototypes for 'pet' or 'fish'.
     From: E Margolis/S Laurence (Concepts [2009], 2.2)
     A reaction: I would take 'pet fish' to work like a database query. 'Fish' has a very vague prototype, and then 'pet fish' narrows the search to fish which are appropriate to be pets. We might say that the prototype is refined, or the Mk 2 prototype appears.
Many complex concepts obviously have no prototype [Margolis/Laurence]
     Full Idea: Many patently complex concepts don't even have a prototype structure, such as 'Chairs that were purchased on a Wednesday'.
     From: E Margolis/S Laurence (Concepts [2009], 2.2)
     A reaction: [The example seems to be from Fodor] I disagree. If we accept the notion of 'refining' the prototype (see Idea 11135), then the compositionality of the expression will produce a genuine but very unusual prototype.
18. Thought / D. Concepts / 4. Structure of Concepts / f. Theory theory of concepts
The theory theory of concepts says they are parts of theories, defined by their roles [Margolis/Laurence]
     Full Idea: The theory theory of concepts says that terms are related as in a scientific theory, and that categorization resembles theorising. It is generally assumed that scientific terms are interdefined so that content is determined by its role in the theory.
     From: E Margolis/S Laurence (Concepts [2009], 2.3)
     A reaction: I never like this sort of account. What are the characteristics of the thing which enable it to fulfil its role? You haven't defined a car when you've said it gets you from A to B.
The theory theory is holistic, so how can people have identical concepts? [Margolis/Laurence]
     Full Idea: A problem with the theory theory of concepts is that it is holistic, saying a concept is determined by its role, not by its constituents. It then seems difficult for different people to possess the same concepts (or even the same person, over time).
     From: E Margolis/S Laurence (Concepts [2009], 2.3)
     A reaction: This seems a good objection to any holistic account of concepts or meaning - spotted by Plato in motivating his theory of Forms, to give the necessary stability to communication.
18. Thought / D. Concepts / 4. Structure of Concepts / g. Conceptual atomism
Maybe concepts have no structure, and determined by relations to the world, not to other concepts [Margolis/Laurence]
     Full Idea: According to conceptual atomism, lexical concepts have no semantic structure, and the content of a concept isn't determined by its relation to other concepts but by its relations to the world.
     From: E Margolis/S Laurence (Concepts [2009], 2.4)
     A reaction: [They cite Fodor 1998 and Millikan 2000] I like the sound of that, because I take the creation of concepts to be (in the first instance) a response to the world, not a response to other concepts.
18. Thought / D. Concepts / 5. Concepts and Language / c. Concepts without language
People can formulate new concepts which are only named later [Margolis/Laurence]
     Full Idea: People seem to be able to formulate novel concepts which are left to be named later; the concept comes first, the name second.
     From: E Margolis/S Laurence (Concepts [2009], 4.2)
     A reaction: [This seems to have empirical support, and he cites Pinker 1994] I do not find this remotely surprising, since I presume that human concepts are a continuous kind with animal concepts, including non-conscious concepts (why not?).
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
We form the image of a cardinal number by a double abstraction, from the elements and from their order [Cantor]
     Full Idea: We call 'cardinal number' the general concept which, by means of our active faculty of thought, arises when we make abstraction from an aggregate of its various elements, and of their order. From this double abstraction the number is an image in our mind.
     From: George Cantor (Beitrage [1915], §1), quoted by Kit Fine - Cantorian Abstraction: Recon. and Defence Intro
     A reaction: [compressed] This is the great Cantor, creator of set theory, endorsing the traditional abstractionism which Frege and his followers so despise. Fine offers a defence of it. The Frege view is platonist, because it refuses to connect numbers to the world.
26. Natural Theory / C. Causation / 5. Direction of causation
p is a cause and q an effect (not vice versa) if manipulations of p change q [Wright,GHv]
     Full Idea: What makes p a cause-factor relative to the effect-factor q (rather than vice versa) is the fact that by manipulating p, producing changes in it 'at will', we could bring about changes in q.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §8)
     A reaction: As a solution to the direction-of-causation problem, I suspect that this proposal is begging the question. Will a causal explanation be offered of the action of manipulation? If he mistook his manipulation for a cause when it is actually an effect...
We can imagine controlling floods by controlling rain, but not vice versa [Wright,GHv]
     Full Idea: Given our present knowledge of the laws of nature, we can imagine ways of controlling floods by controlling rainfall, but not the other way round. That is should be so, however, is contingent.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §8)
     A reaction: Despite my objections to Idea 8363, this is a good example. It won't establish the metaphysics of the direction of causation, though, because God might control rainfall by controlling floods. Maybe causation is more like a motorway pile-up than dominoes.
26. Natural Theory / C. Causation / 8. Particular Causation / a. Observation of causation
The very notion of a cause depends on agency and action [Wright,GHv]
     Full Idea: There is an implicit dependence of the very notion of a cause on a concept of agency and action.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §10)
     A reaction: This is because he thinks experimental intervention is the key to the concept of causation (see Ideas 8362 and 8363). Others go further, and say that the concept of causation arises from subjective experience of performing actions. I quite like that.
We give regularities a causal character by subjecting them to experiment [Wright,GHv]
     Full Idea: What confers on observed regularities the character of causal or nomic connections is the possibility of subjecting cause-factors to experimental test by interfering with the 'natural' course of events.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §7)
     A reaction: This is von Wright's distinctive proposal, making causation a feature of the culture of science, rather than of ordinary life. But see Idea 2461. Causation is becoming too epistemological for my taste. Either it is a feature of reality, or forget it.
26. Natural Theory / C. Causation / 8. Particular Causation / c. Conditions of causation
We must further analyse conditions for causation, into quantifiers or modal concepts [Wright,GHv]
     Full Idea: We may be able to analyse causation into conditionship relations between events or states of affairs, ...but conditions cannot be regarded as logical primitives, ... and must be analysed into quantifiers, or modal concepts.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §2)
     A reaction: [very compressed] A nice illustration of the aim of analytical philosophy - to analyse the elements of reality down to logical primitives. This is the dream of Descartes and Leibniz, continued by Russell and co. Do we still have this aspiration?
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Some laws are causal (Ohm's Law), but others are conceptual principles (conservation of energy) [Wright,GHv]
     Full Idea: Not all laws are causal 'experimentalist' laws, such as those for falling bodies, or the Gas Law, or Ohm's Law. Some are more like conceptual principles, giving a frame of reference, such as inertia, or conservation of energy, or the law of entropy.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §9)
     A reaction: An interesting and important distinction, whenever one is exploring the links between theories of causation and of laws of nature. If one wished to attack the whole concept of 'laws of nature', this might be a good place to start.
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.