Combining Philosophers

All the ideas for Edmund L. Gettier, Giuseppe Peano and Timon

unexpand these ideas     |    start again     |     specify just one area for these philosophers


9 ideas

6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Numbers have been defined in terms of 'successors' to the concept of 'zero' [Peano, by Blackburn]
     Full Idea: Dedekind and Peano define the number series as the series of successors to the number zero, according to five postulates.
     From: report of Giuseppe Peano (works [1890]) by Simon Blackburn - Oxford Dictionary of Philosophy p.279
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
All models of Peano axioms are isomorphic, so the models all seem equally good for natural numbers [Cartwright,R on Peano]
     Full Idea: Peano's axioms are categorical (any two models are isomorphic). Some conclude that the concept of natural number is adequately represented by them, but we cannot identify natural numbers with one rather than another of the isomorphic models.
     From: comment on Giuseppe Peano (Principles of Arithmetic, by a new method [1889], 11) by Richard Cartwright - Propositions 11
     A reaction: This is a striking anticipation of Benacerraf's famous point about different set theory accounts of numbers, where all models seem to work equally well. Cartwright is saying that others have pointed this out.
PA concerns any entities which satisfy the axioms [Peano, by Bostock]
     Full Idea: Peano Arithmetic is about any system of entities that satisfies the Peano axioms.
     From: report of Giuseppe Peano (Principles of Arithmetic, by a new method [1889], 6.3) by David Bostock - Philosophy of Mathematics 6.3
     A reaction: This doesn't sound like numbers in the fullest sense, since those should facilitate counting objects. '3' should mean that number of rose petals, and not just a position in a well-ordered series.
Peano axioms not only support arithmetic, but are also fairly obvious [Peano, by Russell]
     Full Idea: Peano's premises are recommended not only by the fact that arithmetic follows from them, but also by their inherent obviousness.
     From: report of Giuseppe Peano (Principles of Arithmetic, by a new method [1889], p.276) by Bertrand Russell - Regressive Method for Premises in Mathematics p.276
0 is a non-successor number, all successors are numbers, successors can't duplicate, if P(n) and P(n+1) then P(all-n) [Peano, by Flew]
     Full Idea: 1) 0 is a number; 2) The successor of any number is a number; 3) No two numbers have the same successor; 4) 0 is not the successor of any number; 5) If P is true of 0, and if P is true of any number n and of its successor, P is true of every number.
     From: report of Giuseppe Peano (works [1890]) by Antony Flew - Pan Dictionary of Philosophy 'Peano'
     A reaction: Devised by Dedekind and proposed by Peano, these postulates were intended to avoid references to intuition in specifying the natural numbers. I wonder if they could define 'successor' without reference to 'number'.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
We can add Reflexion Principles to Peano Arithmetic, which assert its consistency or soundness [Halbach on Peano]
     Full Idea: Peano Arithmetic cannot derive its own consistency from within itself. But it can be strengthened by adding this consistency statement or by stronger axioms (particularly ones partially expressing soundness). These are known as Reflexion Principles.
     From: comment on Giuseppe Peano (Principles of Arithmetic, by a new method [1889], 1.2) by Volker Halbach - Axiomatic Theories of Truth (2005 ver) 1.2
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Arithmetic can have even simpler logical premises than the Peano Axioms [Russell on Peano]
     Full Idea: Peano's premises are not the ultimate logical premises of arithmetic. Simpler premises and simpler primitive ideas are to be had by carrying our analysis on into symbolic logic.
     From: comment on Giuseppe Peano (Principles of Arithmetic, by a new method [1889], p.276) by Bertrand Russell - Regressive Method for Premises in Mathematics p.276
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / b. Gettier problem
Being a true justified belief is not a sufficient condition for knowledge [Gettier]
     Full Idea: The claim that someone knows a proposition if it is true, it is believed, and the person is justified in their belief is false, in that the conditions do not state a sufficient condition for the claim.
     From: Edmund L. Gettier (Is Justified True Belief Knowledge? [1963], p.145)
     A reaction: This is the beginning of the famous Gettier Problem, which has motivated most epistemology for the last forty years. Gettier implies that justification is necessary, even if it is not sufficient. He gives two counterexamples.
13. Knowledge Criteria / E. Relativism / 3. Subjectivism
That honey is sweet I do not affirm, but I agree that it appears so [Timon]
     Full Idea: That honey is sweet I do not affirm, but I agree that it appears so.
     From: Timon (On Sensations (frags) [c.285 BCE]), quoted by Diogenes Laertius - Lives of Eminent Philosophers 09.104-5