Combining Philosophers

All the ideas for Euclid, Horsten,L/Pettigrew,R and Haskell B. Curry

unexpand these ideas     |    start again     |     specify just one area for these philosophers


24 ideas

2. Reason / E. Argument / 6. Conclusive Proof
Proof reveals the interdependence of truths, as well as showing their certainty [Euclid, by Frege]
     Full Idea: Euclid gives proofs of many things which anyone would concede to him without question. ...The aim of proof is not merely to place the truth of a proposition beyond doubt, but also to afford us insight into the dependence of truths upon one another.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §02
     A reaction: This connects nicely with Shoemaker's view of analysis (Idea 8559), which I will adopt as my general view. I've always thought of philosophy as the aspiration to wisdom through the cartography of concepts.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
If you pick an arbitrary triangle, things proved of it are true of all triangles [Euclid, by Lemmon]
     Full Idea: Euclid begins proofs about all triangles with 'let ABC be a triangle', but ABC is not a proper name. It names an arbitrarily selected triangle, and if that has a property, then we can conclude that all triangles have the property.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by E.J. Lemmon - Beginning Logic 3.2
     A reaction: Lemmon adds the proviso that there must be no hidden assumptions about the triangle we have selected. You must generalise the properties too. Pick a triangle, any triangle, say one with three angles of 60 degrees; now generalise from it.
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Three stages of philosophical logic: syntactic (1905-55), possible worlds (1963-85), widening (1990-) [Horsten/Pettigrew]
     Full Idea: Three periods can be distinguished in philosophical logic: the syntactic stage, from Russell's definite descriptions to the 1950s, the dominance of possible world semantics from the 50s to 80s, and a current widening of the subject.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 1)
     A reaction: [compressed] I've read elsewhere that the arrival of Tarski's account of truth in 1933, taking things beyond the syntactic, was also a landmark.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Logical formalization makes concepts precise, and also shows their interrelation [Horsten/Pettigrew]
     Full Idea: Logical formalization forces the investigator to make the central philosophical concepts precise. It can also show how some philosophical concepts and objects can be defined in terms of others.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 2)
     A reaction: This is the main rationale of the highly formal and mathematical approach to such things. The downside is when you impose 'precision' on language that was never intended to be precise.
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
To study formal systems, look at the whole thing, and not just how it is constructed in steps [Curry]
     Full Idea: In the study of formal systems we do not confine ourselves to the derivation of elementary propositions step by step. Rather we take the system, defined by its primitive frame, as datum, and then study it by any means at our command.
     From: Haskell B. Curry (Remarks on the definition and nature of mathematics [1954], 'The formalist')
     A reaction: This is what may potentially lead to an essentialist view of such things. Focusing on bricks gives formalism, focusing on buildings gives essentialism.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Models are sets with functions and relations, and truth built up from the components [Horsten/Pettigrew]
     Full Idea: A (logical) model is a set with functions and relations defined on it that specify the denotation of the non-logical vocabulary. A series of recursive clauses explicate how truth values of complex sentences are compositionally determined from the parts.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 3)
     A reaction: See the ideas on 'Functions in logic' and 'Relations in logic' (in the alphabetical list) to expand this important idea.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Euclid's geometry is synthetic, but Descartes produced an analytic version of it [Euclid, by Resnik]
     Full Idea: Euclid's geometry is a synthetic geometry; Descartes supplied an analytic version of Euclid's geometry, and we now have analytic versions of the early non-Euclidean geometries.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Michael D. Resnik - Maths as a Science of Patterns One.4
     A reaction: I take it that the original Euclidean axioms were observations about the nature of space, but Descartes turned them into a set of pure interlocking definitions which could still function if space ceased to exist.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
An assumption that there is a largest prime leads to a contradiction [Euclid, by Brown,JR]
     Full Idea: Assume a largest prime, then multiply the primes together and add one. The new number isn't prime, because we assumed a largest prime; but it can't be divided by a prime, because the remainder is one. So only a larger prime could divide it. Contradiction.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by James Robert Brown - Philosophy of Mathematics Ch.1
     A reaction: Not only a very elegant mathematical argument, but a model for how much modern logic proceeds, by assuming that the proposition is false, and then deducing a contradiction from it.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
A unit is that according to which each existing thing is said to be one [Euclid]
     Full Idea: A unit is that according to which each existing thing is said to be one.
     From: Euclid (Elements of Geometry [c.290 BCE], 7 Def 1)
     A reaction: See Frege's 'Grundlagen' §29-44 for a sustained critique of this. Frege is good, but there must be something right about the Euclid idea. If I count stone, paper and scissors as three, each must first qualify to be counted as one. Psychology creeps in.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Postulate 2 says a line can be extended continuously [Euclid, by Shapiro]
     Full Idea: Euclid's Postulate 2 says the geometer can 'produce a finite straight line continuously in a straight line'.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Stewart Shapiro - Thinking About Mathematics 4.2
     A reaction: The point being that this takes infinity for granted, especially if you start counting how many points there are on the line. The Einstein idea that it might eventually come round and hit you on the back of the head would have charmed Euclid.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid says we can 'join' two points, but Hilbert says the straight line 'exists' [Euclid, by Bernays]
     Full Idea: Euclid postulates: One can join two points by a straight line; Hilbert states the axiom: Given any two points, there exists a straight line on which both are situated.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Paul Bernays - On Platonism in Mathematics p.259
Euclid relied on obvious properties in diagrams, as well as on his axioms [Potter on Euclid]
     Full Idea: Euclid's axioms were insufficient to derive all the theorems of geometry: at various points in his proofs he appealed to properties that are obvious from the diagrams but do not follow from the stated axioms.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 03 'aim'
     A reaction: I suppose if the axioms of a system are based on self-evidence, this would licence an appeal to self-evidence elsewhere in the system. Only pedants insist on writing down what is obvious to everyone!
Euclid's parallel postulate defines unique non-intersecting parallel lines [Euclid, by Friend]
     Full Idea: Euclid's fifth 'parallel' postulate says if there is an infinite straight line and a point, then there is only one straight line through the point which won't intersect the first line. This axiom is independent of Euclid's first four (agreed) axioms.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Michèle Friend - Introducing the Philosophy of Mathematics 2.2
     A reaction: This postulate was challenged in the nineteenth century, which was a major landmark in the development of modern relativist views of knowledge.
Euclid needs a principle of continuity, saying some lines must intersect [Shapiro on Euclid]
     Full Idea: Euclid gives no principle of continuity, which would sanction an inference that if a line goes from the outside of a circle to the inside of circle, then it must intersect the circle at some point.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Stewart Shapiro - Philosophy of Mathematics 6.1 n2
     A reaction: Cantor and Dedekind began to contemplate discontinuous lines.
Modern geometries only accept various parts of the Euclid propositions [Russell on Euclid]
     Full Idea: In descriptive geometry the first 26 propositions of Euclid hold. In projective geometry the 1st, 7th, 16th and 17th require modification (as a straight line is not a closed series). Those after 26 depend on the postulate of parallels, so aren't assumed.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Bertrand Russell - The Principles of Mathematics §388
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Euclid's common notions or axioms are what we must have if we are to learn anything at all [Euclid, by Roochnik]
     Full Idea: The best known example of Euclid's 'common notions' is "If equals are subtracted from equals the remainders are equal". These can be called axioms, and are what "the man who is to learn anything whatever must have".
     From: report of Euclid (Elements of Geometry [c.290 BCE], 72a17) by David Roochnik - The Tragedy of Reason p.149
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
It is untenable that mathematics is general physical truths, because it needs infinity [Curry]
     Full Idea: According to realism, mathematical propositions express the most general properties of our physical environment. This is the primitive view of mathematics, yet on account of the essential role played by infinity in mathematics, it is untenable today.
     From: Haskell B. Curry (Remarks on the definition and nature of mathematics [1954], 'The problem')
     A reaction: I resist this view, because Curry's view seems to imply a mad metaphysics. Hilbert resisted the role of the infinite in essential mathematics. If the physical world includes its possibilities, that might do the job. Hellman on structuralism?
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Saying mathematics is logic is merely replacing one undefined term by another [Curry]
     Full Idea: To say that mathematics is logic is merely to replace one undefined term by another.
     From: Haskell B. Curry (Remarks on the definition and nature of mathematics [1954], 'Mathematics')
7. Existence / A. Nature of Existence / 1. Nature of Existence
If 'exist' doesn't express a property, we can hardly ask for its essence [Horsten/Pettigrew]
     Full Idea: If there is indeed no property of existence that is expressed by the word 'exist', then it makes no sense to ask for its essence.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 2)
     A reaction: As far as I can tell, this was exactly Aristotle's conclusion, so he skirted round the question of 'being qua being', and focused on the nature of objects instead. Grand continental talk of 'Being' doesn't sound very interesting.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A Tarskian model can be seen as a possible state of affairs [Horsten/Pettigrew]
     Full Idea: A Tarskian model can in a sense be seen as a model of a possible state of affairs.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 3)
     A reaction: I include this remark to show how possible worlds semantics built on the arrival of model theory.
The 'spheres model' was added to possible worlds, to cope with counterfactuals [Horsten/Pettigrew]
     Full Idea: The notion of a possible worlds model was extended (resulting in the concept of a 'spheres model') in order to obtain a satisfactory logical treatment of counterfactual conditional sentences.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 4)
     A reaction: Thus we add 'centred' worlds, and an 'actual' world, to the loose original model. It is important to remember when we discuss 'close' worlds that we are then committed to these presuppositions.
10. Modality / E. Possible worlds / 1. Possible Worlds / b. Impossible worlds
Epistemic logic introduced impossible worlds [Horsten/Pettigrew]
     Full Idea: The idea of 'impossible worlds' was introduced into epistemic logic.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 4)
     A reaction: Nathan Salmon seems interested in their role in metaphysics (presumably in relation to Meinongian impossible objects, like circular squares, which must necessarily be circular).
10. Modality / E. Possible worlds / 1. Possible Worlds / e. Against possible worlds
Possible worlds models contain sets of possible worlds; this is a large metaphysical commitment [Horsten/Pettigrew]
     Full Idea: Each possible worlds model contains a set of possible worlds. For this reason, possible worlds semantics is often charged with smuggling in heavy metaphysical commitments.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 3)
     A reaction: To a beginner it looks very odd that you should try to explain possibility by constructing a model of it in terms of 'possible' worlds.
Using possible worlds for knowledge and morality may be a step too far [Horsten/Pettigrew]
     Full Idea: When the possible worlds semantics were further extended to model notions of knowledge and of moral obligation, the application was beginning to look distinctly forced and artificial.
     From: Horsten,L/Pettigrew,R (Mathematical Methods in Philosophy [2014], 5)
     A reaction: They accept lots of successes in modelling necessity and time.