Combining Philosophers

All the ideas for Euclid, Thrasymachus and Ian McFetridge

unexpand these ideas     |    start again     |     specify just one area for these philosophers


25 ideas

2. Reason / E. Argument / 6. Conclusive Proof
Proof reveals the interdependence of truths, as well as showing their certainty [Euclid, by Frege]
     Full Idea: Euclid gives proofs of many things which anyone would concede to him without question. ...The aim of proof is not merely to place the truth of a proposition beyond doubt, but also to afford us insight into the dependence of truths upon one another.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §02
     A reaction: This connects nicely with Shoemaker's view of analysis (Idea 8559), which I will adopt as my general view. I've always thought of philosophy as the aspiration to wisdom through the cartography of concepts.
3. Truth / B. Truthmakers / 1. For Truthmakers
We want to know what makes sentences true, rather than defining 'true' [McFetridge]
     Full Idea: The generalisation 'What makes a (any) sentence true?' is not a request for definitions of 'true' (the concept), but rather requests for (partial) explanations of why certain particular sentences are true.
     From: Ian McFetridge (Truth, Correspondence, Explanation and Knowledge [1977], II)
     A reaction: McFetridge is responding to the shortcomings of Tarski's account of truth. The mystery seems to be why some of our representations of the world are 'successful', and others are not.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / c. Derivations rules of PC
If you pick an arbitrary triangle, things proved of it are true of all triangles [Euclid, by Lemmon]
     Full Idea: Euclid begins proofs about all triangles with 'let ABC be a triangle', but ABC is not a proper name. It names an arbitrarily selected triangle, and if that has a property, then we can conclude that all triangles have the property.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by E.J. Lemmon - Beginning Logic 3.2
     A reaction: Lemmon adds the proviso that there must be no hidden assumptions about the triangle we have selected. You must generalise the properties too. Pick a triangle, any triangle, say one with three angles of 60 degrees; now generalise from it.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Euclid's geometry is synthetic, but Descartes produced an analytic version of it [Euclid, by Resnik]
     Full Idea: Euclid's geometry is a synthetic geometry; Descartes supplied an analytic version of Euclid's geometry, and we now have analytic versions of the early non-Euclidean geometries.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Michael D. Resnik - Maths as a Science of Patterns One.4
     A reaction: I take it that the original Euclidean axioms were observations about the nature of space, but Descartes turned them into a set of pure interlocking definitions which could still function if space ceased to exist.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
An assumption that there is a largest prime leads to a contradiction [Euclid, by Brown,JR]
     Full Idea: Assume a largest prime, then multiply the primes together and add one. The new number isn't prime, because we assumed a largest prime; but it can't be divided by a prime, because the remainder is one. So only a larger prime could divide it. Contradiction.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by James Robert Brown - Philosophy of Mathematics Ch.1
     A reaction: Not only a very elegant mathematical argument, but a model for how much modern logic proceeds, by assuming that the proposition is false, and then deducing a contradiction from it.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
A unit is that according to which each existing thing is said to be one [Euclid]
     Full Idea: A unit is that according to which each existing thing is said to be one.
     From: Euclid (Elements of Geometry [c.290 BCE], 7 Def 1)
     A reaction: See Frege's 'Grundlagen' §29-44 for a sustained critique of this. Frege is good, but there must be something right about the Euclid idea. If I count stone, paper and scissors as three, each must first qualify to be counted as one. Psychology creeps in.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Postulate 2 says a line can be extended continuously [Euclid, by Shapiro]
     Full Idea: Euclid's Postulate 2 says the geometer can 'produce a finite straight line continuously in a straight line'.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Stewart Shapiro - Thinking About Mathematics 4.2
     A reaction: The point being that this takes infinity for granted, especially if you start counting how many points there are on the line. The Einstein idea that it might eventually come round and hit you on the back of the head would have charmed Euclid.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid relied on obvious properties in diagrams, as well as on his axioms [Potter on Euclid]
     Full Idea: Euclid's axioms were insufficient to derive all the theorems of geometry: at various points in his proofs he appealed to properties that are obvious from the diagrams but do not follow from the stated axioms.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 03 'aim'
     A reaction: I suppose if the axioms of a system are based on self-evidence, this would licence an appeal to self-evidence elsewhere in the system. Only pedants insist on writing down what is obvious to everyone!
Euclid's parallel postulate defines unique non-intersecting parallel lines [Euclid, by Friend]
     Full Idea: Euclid's fifth 'parallel' postulate says if there is an infinite straight line and a point, then there is only one straight line through the point which won't intersect the first line. This axiom is independent of Euclid's first four (agreed) axioms.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Michèle Friend - Introducing the Philosophy of Mathematics 2.2
     A reaction: This postulate was challenged in the nineteenth century, which was a major landmark in the development of modern relativist views of knowledge.
Euclid needs a principle of continuity, saying some lines must intersect [Shapiro on Euclid]
     Full Idea: Euclid gives no principle of continuity, which would sanction an inference that if a line goes from the outside of a circle to the inside of circle, then it must intersect the circle at some point.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Stewart Shapiro - Philosophy of Mathematics 6.1 n2
     A reaction: Cantor and Dedekind began to contemplate discontinuous lines.
Euclid says we can 'join' two points, but Hilbert says the straight line 'exists' [Euclid, by Bernays]
     Full Idea: Euclid postulates: One can join two points by a straight line; Hilbert states the axiom: Given any two points, there exists a straight line on which both are situated.
     From: report of Euclid (Elements of Geometry [c.290 BCE]) by Paul Bernays - On Platonism in Mathematics p.259
Modern geometries only accept various parts of the Euclid propositions [Russell on Euclid]
     Full Idea: In descriptive geometry the first 26 propositions of Euclid hold. In projective geometry the 1st, 7th, 16th and 17th require modification (as a straight line is not a closed series). Those after 26 depend on the postulate of parallels, so aren't assumed.
     From: comment on Euclid (Elements of Geometry [c.290 BCE]) by Bertrand Russell - The Principles of Mathematics §388
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Euclid's common notions or axioms are what we must have if we are to learn anything at all [Euclid, by Roochnik]
     Full Idea: The best known example of Euclid's 'common notions' is "If equals are subtracted from equals the remainders are equal". These can be called axioms, and are what "the man who is to learn anything whatever must have".
     From: report of Euclid (Elements of Geometry [c.290 BCE], 72a17) by David Roochnik - The Tragedy of Reason p.149
7. Existence / D. Theories of Reality / 8. Facts / a. Facts
We normally explain natural events by citing further facts [McFetridge]
     Full Idea: If one were asked 'What makes salt soluble in water?', the most natural answer would be something of the style 'The fact that it has such-and-such structure'.
     From: Ian McFetridge (Truth, Correspondence, Explanation and Knowledge [1977], II)
     A reaction: Personally I would want to talk about its 'powers' (dispositional properties), rather than its 'structure' (categorical properties). This defends facts, but you could easily paraphrase 'fact' out of this reply (as McFetridge realised).
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity overrules all other necessities [McFetridge]
     Full Idea: If it is logically necessary that if p then q, then there is no other sense of 'necessary' in which it is not necessary that if p then q.
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §1)
     A reaction: The thesis which McFetridge proposes to defend. The obvious rival would be metaphysical necessity, and the rival claim would presumably be that things are only logically necessary if that is entailed by a metaphysical necessity. Metaphysics drives logic.
The fundamental case of logical necessity is the valid conclusion of an inference [McFetridge, by Hale]
     Full Idea: McFetridge's conception of logical necessity is one which sees the concept as receiving its fundamental exemplification in the connection between the premiss and conclusion of a deductively valid inference.
     From: report of Ian McFetridge (Logical Necessity: Some Issues [1986]) by Bob Hale - Absolute Necessities 2
     A reaction: This would mean that p could be logically necessary but false (if it was a valid argument from false premisses). What if it was a valid inference in a dodgy logical system (including 'tonk', for example)?
In the McFetridge view, logical necessity means a consequent must be true if the antecedent is [McFetridge, by Hale]
     Full Idea: McFetridge's view proves that if the conditional corresponding to a valid inference is logically necessary, then there is no sense in which it is possible that its antecedent be true but its consequent false. ..This result generalises to any statement.
     From: report of Ian McFetridge (Logical Necessity: Some Issues [1986]) by Bob Hale - Absolute Necessities 2
     A reaction: I am becoming puzzled by Hale's assertion that logical necessity is 'absolute', while resting his case on a conditional. Are we interested in the necessity of the inference, or the necessity of the consequent?
Logical necessity requires that a valid argument be necessary [McFetridge]
     Full Idea: There will be a legitimate notion of 'logical' necessity only if there is a notion of necessity which attaches to the claim, concerning a deductively valid argument, that if the premisses are true then so is the conclusion.
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §1)
     A reaction: He quotes Aristotle's Idea 11148 in support. Is this resting a stronger idea on a weaker one? Or is it the wrong way round? We endorse validity because we see the necessity; we don't endorse necessity because we see 'validity'.
Traditionally, logical necessity is the strongest, and entails any other necessities [McFetridge]
     Full Idea: The traditional crucial assumption is that logical necessity is the strongest notion of necessity. If it is logically necessary that p, then it is necessary that p in any other use of the notion of necessity there may be (physically, practically etc.).
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §1)
     A reaction: Sounds right. We might say it is physically necessary simply because it is logically necessary, and even that it is metaphysically necessary because it is logically necessary (required by logic). Logical possibility is hence the weakest kind?
It is only logical necessity if there is absolutely no sense in which it could be false [McFetridge]
     Full Idea: Is there any sense in which, despite an ascription of necessity to p, it is held that not-p is possible? If there is, then the original claim then it was necessary is not a claim of 'logical' necessity (which is the strongest necessity).
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §1)
     A reaction: See Idea 12181, which leads up to this proposed "test" for logical necessity. McFetridge has already put epistemic ('for all I know') possibility to one side. □p→¬◊¬p is the standard reading of necessity. His word 'sense' bears the burden.
The mark of logical necessity is deduction from any suppositions whatever [McFetridge]
     Full Idea: The manifestation of the belief that a mode of inference is logically necessarily truth-preserving is the preparedness to employ that mode of inference in reasoning from any set of suppositions whatsoever.
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §4)
     A reaction: He rests this on the idea of 'cotenability' of the two sides of a counterfactual (in Mill, Goodman and Lewis). There seems, at first blush, to be a problem of the relevance of the presuppositions.
10. Modality / B. Possibility / 2. Epistemic possibility
We assert epistemic possibility without commitment to logical possibility [McFetridge]
     Full Idea: Time- and person-relative epistemic possibility can be asserted even when logical possibility cannot, such as undecided mathematical propositions. 'It may be that p' just comes to 'For all I know, not-p'.
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §1)
     A reaction: If it is possible 'for all I know', then it could be actual for all I know, and if we accept that it might be actual, we could hardly deny that it is logically possible. Logical and epistemic possibilities of mathematical p stand or fall together.
10. Modality / C. Sources of Modality / 1. Sources of Necessity
Objectual modal realists believe in possible worlds; non-objectual ones rest it on the actual world [McFetridge]
     Full Idea: The 'objectual modal realist' holds that what makes modal beliefs true are certain modal objects, typically 'possible worlds'. ..The 'non-objectual modal realist' says modal judgements are made true by how things stand with respect to this world.
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §2)
     A reaction: I am an enthusiastic 'non-objectual modal realist'. I accept the argument that real possible worlds have no relevance to the actual world, and explain nothing (see Jubien). The possibilities reside in the 'powers' of this world. See Molnar on powers.
10. Modality / C. Sources of Modality / 5. Modality from Actuality
Modal realists hold that necessities and possibilities are part of the totality of facts [McFetridge]
     Full Idea: The 'modal realist' holds that part of the totality of what is the case, the totality of facts, are such things as that certain events could have happened, certain propositions are necessarily true, if this happened then that would have been the case.
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §2)
     A reaction: I am an enthusiastic modal realist. If the aim of philosophy is 'to understand' (and I take that to be the master idea of the subject) then no understanding is possible which excludes the possibilities and necessities in things.
28. God / C. Attitudes to God / 3. Deism
Clearly the gods ignore human affairs, or they would have given us justice [Thrasymachus]
     Full Idea: The gods pay no attention to human affairs; if they did, they would not have ignored justice, which is the greatest good for men; for we see that men do not act with justice.
     From: Thrasymachus (fragments/reports [c.426 BCE], B8), quoted by Hermias - Notes on Plato's 'Phaedrus' 239.22