Combining Philosophers

All the ideas for Frank Close, Archelaus and Richard Dedekind

unexpand these ideas     |    start again     |     specify just one area for these philosophers


48 ideas

2. Reason / D. Definition / 9. Recursive Definition
Dedekind proved definition by recursion, and thus proved the basic laws of arithmetic [Dedekind, by Potter]
     Full Idea: Dedkind gave a rigorous proof of the principle of definition by recursion, permitting recursive definitions of addition and multiplication, and hence proofs of the familiar arithmetical laws.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 13 'Deriv'
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
An infinite set maps into its own proper subset [Dedekind, by Reck/Price]
     Full Idea: A set is 'Dedekind-infinite' iff there exists a one-to-one function that maps a set into a proper subset of itself.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], §64) by E Reck / M Price - Structures and Structuralism in Phil of Maths n 7
     A reaction: Sounds as if it is only infinite if it is contradictory, or doesn't know how big it is!
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
We have the idea of self, and an idea of that idea, and so on, so infinite ideas are available [Dedekind, by Potter]
     Full Idea: Dedekind had an interesting proof of the Axiom of Infinity. He held that I have an a priori grasp of the idea of my self, and that every idea I can form the idea of that idea. Hence there are infinitely many objects available to me a priori.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], no. 66) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 12 'Numb'
     A reaction: Who said that Descartes' Cogito was of no use? Frege endorsed this, as long as the ideas are objective and not subjective.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Dedekind originally thought more in terms of mereology than of sets [Dedekind, by Potter]
     Full Idea: Dedekind plainly had fusions, not collections, in mind when he avoided the empty set and used the same symbol for membership and inclusion - two tell-tale signs of a mereological conception.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], 2-3) by Michael Potter - Set Theory and Its Philosophy 02.1
     A reaction: Potter suggests that mathematicians were torn between mereology and sets, and eventually opted whole-heartedly for sets. Maybe this is only because set theory was axiomatised by Zermelo some years before Lezniewski got to mereology.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Numbers are free creations of the human mind, to understand differences [Dedekind]
     Full Idea: Numbers are free creations of the human mind; they serve as a means of apprehending more easily and more sharply the difference of things.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], Pref)
     A reaction: Does this fit real numbers and complex numbers, as well as natural numbers? Frege was concerned by the lack of objectivity in this sort of view. What sort of arithmetic might the Martians have created? Numbers register sameness too.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Dedekind defined the integers, rationals and reals in terms of just the natural numbers [Dedekind, by George/Velleman]
     Full Idea: It was primarily Dedekind's accomplishment to define the integers, rationals and reals, taking only the system of natural numbers for granted.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by A.George / D.J.Velleman - Philosophies of Mathematics Intro
Ordinals can define cardinals, as the smallest ordinal that maps the set [Dedekind, by Heck]
     Full Idea: Dedekind and Cantor said the cardinals may be defined in terms of the ordinals: The cardinal number of a set S is the least ordinal onto whose predecessors the members of S can be mapped one-one.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 5
Order, not quantity, is central to defining numbers [Dedekind, by Monk]
     Full Idea: Dedekind said that the notion of order, rather than that of quantity, is the central notion in the definition of number.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Ray Monk - Bertrand Russell: Spirit of Solitude Ch.4
     A reaction: Compare Aristotle's nice question in Idea 646. My intuition is that quantity comes first, because I'm not sure HOW you could count, if you didn't think you were changing the quantity each time. Why does counting go in THAT particular order? Cf. Idea 8661.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Dedekind's ordinals are just members of any progression whatever [Dedekind, by Russell]
     Full Idea: Dedekind's ordinals are not essentially either ordinals or cardinals, but the members of any progression whatever.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - The Principles of Mathematics §243
     A reaction: This is part of Russell's objection to Dedekind's structuralism. The question is always why these beautiful structures should actually be considered as numbers. I say, unlike Russell, that the connection to counting is crucial.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
We want the essence of continuity, by showing its origin in arithmetic [Dedekind]
     Full Idea: It then only remained to discover its true origin in the elements of arithmetic and thus at the same time to secure a real definition of the essence of continuity.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], Intro)
     A reaction: [He seeks the origin of the theorem that differential calculus deals with continuous magnitude, and he wants an arithmetical rather than geometrical demonstration; the result is his famous 'cut'].
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A cut between rational numbers creates and defines an irrational number [Dedekind]
     Full Idea: Whenever we have to do a cut produced by no rational number, we create a new, an irrational number, which we regard as completely defined by this cut.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], §4)
     A reaction: Fine quotes this to show that the Dedekind Cut creates the irrational numbers, rather than hitting them. A consequence is that the irrational numbers depend on the rational numbers, and so can never be identical with any of them. See Idea 10573.
Dedekind's axiom that his Cut must be filled has the advantages of theft over honest toil [Dedekind, by Russell]
     Full Idea: Dedekind set up the axiom that the gap in his 'cut' must always be filled …The method of 'postulating' what we want has many advantages; they are the same as the advantages of theft over honest toil. Let us leave them to others.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - Introduction to Mathematical Philosophy VII
     A reaction: This remark of Russell's is famous, and much quoted in other contexts, but I have seen the modern comment that it is grossly unfair to Dedekind.
Dedekind says each cut matches a real; logicists say the cuts are the reals [Dedekind, by Bostock]
     Full Idea: One view, favoured by Dedekind, is that the cut postulates a real number for each cut in the rationals; it does not identify real numbers with cuts. ....A view favoured by later logicists is simply to identify a real number with a cut.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by David Bostock - Philosophy of Mathematics 4.4
     A reaction: Dedekind is the patriarch of structuralism about mathematics, so he has little interest in the existenc of 'objects'.
I say the irrational is not the cut itself, but a new creation which corresponds to the cut [Dedekind]
     Full Idea: Of my theory of irrationals you say that the irrational number is nothing else than the cut itself, whereas I prefer to create something new (different from the cut), which corresponds to the cut. We have the right to claim such a creative power.
     From: Richard Dedekind (Letter to Weber [1888], 1888 Jan), quoted by Stewart Shapiro - Philosophy of Mathematics 5.4
     A reaction: Clearly a cut will not locate a unique irrational number, so something more needs to be done. Shapiro remarks here that for Dedekind numbers are objects.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
In counting we see the human ability to relate, correspond and represent [Dedekind]
     Full Idea: If we scrutinize closely what is done in counting an aggregate of things, we see the ability of the mind to relate things to things, to let a thing correspond to a thing, or to represent a thing by a thing, without which no thinking is possible.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], Pref)
     A reaction: I don't suppose it occurred to Dedekind that he was reasserting Hume's observation about the fundamental psychology of thought. Is the origin of our numerical ability of philosophical interest?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic is just the consequence of counting, which is the successor operation [Dedekind]
     Full Idea: I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetic act, that of counting, and counting itself is nothing else than the successive creation of the infinite series of positive integers.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], §1)
     A reaction: Thus counting roots arithmetic in the world, the successor operation is the essence of counting, and the Dedekind-Peano axioms are built around successors, and give the essence of arithmetic. Unfashionable now, but I love it. Intransitive counting?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / b. Mark of the infinite
A system S is said to be infinite when it is similar to a proper part of itself [Dedekind]
     Full Idea: A system S is said to be infinite when it is similar to a proper part of itself.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], V.64)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
If x changes by less and less, it must approach a limit [Dedekind]
     Full Idea: If in the variation of a magnitude x we can for every positive magnitude δ assign a corresponding position from and after which x changes by less than δ then x approaches a limiting value.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], p.27), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.7
     A reaction: [Kitcher says he 'showed' this, rather than just stating it]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Dedekind gives a base number which isn't a successor, then adds successors and induction [Dedekind, by Hart,WD]
     Full Idea: Dedekind's natural numbers: an object is in a set (0 is a number), a function sends the set one-one into itself (numbers have unique successors), the object isn't a value of the function (it isn't a successor), plus induction.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by William D. Hart - The Evolution of Logic 5
     A reaction: Hart notes that since this refers to sets of individuals, it is a second-order account of numbers, what we now call 'Second-Order Peano Arithmetic'.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Zero is a member, and all successors; numbers are the intersection of sets satisfying this [Dedekind, by Bostock]
     Full Idea: Dedekind's idea is that the set of natural numbers has zero as a member, and also has as a member the successor of each of its members, and it is the smallest set satisfying this condition. It is the intersection of all sets satisfying the condition.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by David Bostock - Philosophy of Mathematics 4.4
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Categoricity implies that Dedekind has characterised the numbers, because it has one domain [Rumfitt on Dedekind]
     Full Idea: It is Dedekind's categoricity result that convinces most of us that he has articulated our implicit conception of the natural numbers, since it entitles us to speak of 'the' domain (in the singular, up to isomorphism) of natural numbers.
     From: comment on Richard Dedekind (Nature and Meaning of Numbers [1888]) by Ian Rumfitt - The Boundary Stones of Thought 9.1
     A reaction: The main rival is set theory, but that has an endlessly expanding domain. He points out that Dedekind needs second-order logic to achieve categoricity. Rumfitt says one could also add to the 1st-order version that successor is an ancestral relation.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Induction is proved in Dedekind, an axiom in Peano; the latter seems simpler and clearer [Dedekind, by Russell]
     Full Idea: Dedekind proves mathematical induction, while Peano regards it as an axiom, ...and Peano's method has the advantage of simplicity, and a clearer separation between the particular and the general propositions of arithmetic.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - The Principles of Mathematics §241
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Dedekind originated the structuralist conception of mathematics [Dedekind, by MacBride]
     Full Idea: Dedekind is the philosopher-mathematician with whom the structuralist conception originates.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], §3 n13) by Fraser MacBride - Structuralism Reconsidered
     A reaction: Hellman says the idea grew naturally out of modern mathematics, and cites Hilbert's belief that furniture would do as mathematical objects.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Dedekindian abstraction talks of 'positions', where Cantorian abstraction talks of similar objects [Dedekind, by Fine,K]
     Full Idea: Dedekindian abstraction says mathematical objects are 'positions' in a model, while Cantorian abstraction says they are the result of abstracting on structurally similar objects.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Kit Fine - Cantorian Abstraction: Recon. and Defence §6
     A reaction: The key debate among structuralists seems to be whether or not they are committed to 'objects'. Fine rejects the 'austere' version, which says that objects have no properties. Either version of structuralism can have abstraction as its basis.
9. Objects / A. Existence of Objects / 3. Objects in Thought
A thing is completely determined by all that can be thought concerning it [Dedekind]
     Full Idea: A thing (an object of our thought) is completely determined by all that can be affirmed or thought concerning it.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], I.1)
     A reaction: How could you justify this as an observation? Why can't there be unthinkable things (even by God)? Presumably Dedekind is offering a stipulative definition, but we may then be confusing epistemology with ontology.
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
Dedekind said numbers were abstracted from systems of objects, leaving only their position [Dedekind, by Dummett]
     Full Idea: By applying the operation of abstraction to a system of objects isomorphic to the natural numbers, Dedekind believed that we obtained the abstract system of natural numbers, each member having only properties consequent upon its position.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Michael Dummett - The Philosophy of Mathematics
     A reaction: Dummett is scornful of the abstractionism. He cites Benacerraf as a modern non-abstractionist follower of Dedekind's view. There seems to be a suspicion of circularity in it. How many objects will you abstract from to get seven?
We derive the natural numbers, by neglecting everything of a system except distinctness and order [Dedekind]
     Full Idea: If in an infinite system, set in order, we neglect the special character of the elements, simply retaining their distinguishability and their order-relations to one another, then the elements are the natural numbers, created by the human mind.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], VI.73)
     A reaction: [compressed] This is the classic abstractionist view of the origin of number, but with the added feature that the order is first imposed, so that ordinals remain after the abstraction. This, of course, sounds a bit circular, as well as subjective.
18. Thought / E. Abstraction / 8. Abstractionism Critique
Dedekind has a conception of abstraction which is not psychologistic [Dedekind, by Tait]
     Full Idea: Dedekind's conception is psychologistic only if that is the only way to understand the abstraction that is involved, which it is not.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by William W. Tait - Frege versus Cantor and Dedekind IV
     A reaction: This is a very important suggestion, implying that we can retain some notion of abstractionism, while jettisoning the hated subjective character of private psychologism, which seems to undermine truth and logic.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Archelaus was the first person to say that the universe is boundless [Archelaus, by Diog. Laertius]
     Full Idea: Archelaus was the first person to say that the universe is boundless.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 02.Ar.3
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / b. Heat
Work degrades into heat, but not vice versa [Close]
     Full Idea: William Thomson, Lord Kelvin, declared (in 1865) the second law of thermodynamics: mechanical work inevitably tends to degrade into heat, but not vice versa.
     From: Frank Close (Theories of Everything [2017], 3 'Perpetual')
     A reaction: The basis of entropy, which makes time an essential part of physics. Might this be the single most important fact about the physical world?
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
First Law: energy can change form, but is conserved overall [Close]
     Full Idea: The first law of thermodynamics : energy can be changed from one form to another, but is always conserved overall.
     From: Frank Close (Theories of Everything [2017], 3 'Perpetual')
     A reaction: So we have no idea what energy is, but we know it's conserved. (Daniel Bernoulli showed the greater the mean energy, the higher the temperature. James Joule showed the quantitative equivalence of heat and work p.26-7)
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / d. Entropy
Third Law: total order and minimum entropy only occurs at absolute zero [Close]
     Full Idea: The third law of thermodynamics says that a hypothetical state of total order and minimum entropy can be attained only at the absolute zero temperature, minus 273 degrees Celsius.
     From: Frank Close (Theories of Everything [2017], 3 'Arrow')
     A reaction: If temperature is energetic movement of atoms (or whatever), then obviously zero movement is the coldest it can get. So is absolute zero an energy state, or an absence of energy? I have no idea what 'total order' means.
27. Natural Reality / B. Modern Physics / 1. Relativity / a. Special relativity
All motions are relative and ambiguous, but acceleration is the same in all inertial frames [Close]
     Full Idea: There is no absolute state of rest; only relative motions are unambiguous. Contrast this with acceleration, however, which has the same magnitude in all inertial frames.
     From: Frank Close (Theories of Everything [2017], 3 'Newton's')
     A reaction: It seems important to remember this, before we start trumpeting about the whole of physics being relative. ....But see Idea 20634!
The electric and magnetic are tightly linked, and viewed according to your own motion [Close]
     Full Idea: Electric and magnetic phenomena are profoundly intertwined; what you interpret as electric or magnetic thus depends on your own motion.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: This sounds like an earlier version of special relativity.
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
The general relativity equations relate curvature in space-time to density of energy-momentum [Close]
     Full Idea: The essence of general relativity relates 'curvature in space-time' on one side of the equation to the 'density of momentum and energy' on the other. ...In full, Einstein required ten equations of this type.
     From: Frank Close (Theories of Everything [2017], 5 'Gravity')
     A reaction: Momentum involves mass, and energy is equivalent to mass (e=mc^2).
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Photon exchange drives the electro-magnetic force [Close]
     Full Idea: The exchange of photons drives the electro-magnetic force.
     From: Frank Close (Theories of Everything [2017], 6 'Superstrings')
     A reaction: So light, which we just think of as what is visible, is a mere side-effect of the engine room of nature - the core mechanism of the whole electro-magnetic field.
Electric fields have four basic laws (two by Gauss, one by Ampère, one by Faraday) [Close]
     Full Idea: Four basic laws of electric and magnetic fields: Gauss's Law (about the flux produced by a field), Gauss's law of magnets (there can be no monopoles), Ampère's Law (fields on surfaces), and Farday's Law (accelerated magnets produce fields).
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: [Highly compressed, for an overview. Close explains them]
Light isn't just emitted in quanta called photons - light is photons [Close]
     Full Idea: Planck had assumed that light is emitted in quanta called photons. Einstein went further - light is photons.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: The point is that light travels as entities which are photons, rather than the emissions being quantized packets of some other stuff.
In general relativity the energy and momentum of photons subjects them to gravity [Close]
     Full Idea: In Einstein's general theory, gravity acts also on energy and momentum, not simply on mass. For example, massless photons of light feel the gravitational attraction of the Sun and can be deflected.
     From: Frank Close (Theories of Everything [2017], 5 'Planck')
     A reaction: Ah, a puzzle solved. How come massless photons are bent by gravity?
Electro-magnetic waves travel at light speed - so light is electromagnetism! [Close]
     Full Idea: Faradays' measurements predicted the speed of electro-magnetic waves, which happened to be the speed of light, so Maxwell made an inspired leap: light is an electromagnetic wave!
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: Put that way, it doesn't sound like an 'inspired' leap, because travelling at exactly the same speed seems a pretty good indication that they are the same sort of thing. (But I'm not denying that Maxwell was a special guy!)
In QED, electro-magnetism exists in quantum states, emitting and absorbing electrons [Close]
     Full Idea: Dirac created quantum electrodynamics (QED): the universal electro-magnetic field can exist in discreet states of energy (with photons appearing and disappearing by energy excitations. This combined classical ideas, quantum theory and special relativity.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: Close says this is the theory of everything in atomic structure, but not in nuclei (which needs QCD and QFD). So if there are lots of other 'fields' (e.g. gravitational, weak, strong, Higgs), how do they all fit together? Do they talk to one another?
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
Quantum fields contain continual rapid creation and disappearance [Close]
     Full Idea: Quantum field theory implies that the vacuum of space is filled with particles and antiparticles which bubble in and out of existence on faster and faster timescales over shorter and shorter distances.
     From: Frank Close (Theories of Everything [2017], 6 'Intro')
     A reaction: Ponder this sentence until you head aches. Existence, but not as we know it, Jim. Close says calculations in QED about the electron confirm this.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons get their mass by interaction with the Higgs field [Close]
     Full Idea: The electron gets its mass by interaction with the ubiquitous Higgs field.
     From: Frank Close (Theories of Everything [2017], 6 'Hierarchy')
     A reaction: I thought I understood mass until I read this. Is it just wrong to say the mass of a table is the 'amount of stuff' in it?
Dirac showed how electrons conform to special relativity [Close]
     Full Idea: In 1928 Paul Dirac discovered the quantum equation that describes the electron and conforms to the requirements special relativity theory.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: This sounds like a major step in the unification of physics. Quantum theory and General relativity remain irreconcilable.
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
Modern theories of matter are grounded in heat, work and energy [Close]
     Full Idea: The link between temperature, heat, work and energy is at the root of our historical ability to construct theories of matter, such as Newton's dynamics, while ignoring, and indeed being ignorant of - atomic dimensions.
     From: Frank Close (Theories of Everything [2017], 3 'Arrow')
     A reaction: That is, presumably, that even when you fill in the atoms, and the standard model of physics, these aspects of matter do the main explaiining (of the behaviour, rather than of the structure).
27. Natural Reality / B. Modern Physics / 5. Unified Models / a. Electro-weak unity
The Higgs field is an electroweak plasma - but we don't know what stuff it consists of [Close]
     Full Idea: In 2012 it was confirmed that we are immersed in an electroweak plasma - the Higgs field. We curently have no knowledge of what this stuff might consist of.
     From: Frank Close (Theories of Everything [2017], 4 'Higgs')
     A reaction: The second sentence has my full attention. So we don't understand a field properly until we understand the 'stuff' it is made of? So what are all the familiar fields made of? Tell me more!
27. Natural Reality / C. Space / 6. Space-Time
Space-time is indeterminate foam over short distances [Close]
     Full Idea: At very short distances, space-time itself becomes some indeterminate foam.
     From: Frank Close (Theories of Everything [2017], 6 'Intro')
     A reaction: [see Close for a bit more detail of this weird idea]
27. Natural Reality / G. Biology / 3. Evolution
Archelaus said life began in a primeval slime [Archelaus, by Schofield]
     Full Idea: Archelaus wrote that life on Earth began in a primeval slime.
     From: report of Archelaus (fragments/reports [c.450 BCE]) by Malcolm Schofield - Archelaus
     A reaction: This sounds like a fairly clearcut assertion of the production of life by evolution. Darwin's contribution was to propose the mechanism for achieving it. We should honour the name of Archelaus for this idea.