Combining Philosophers

All the ideas for Frank Close, Dean W. Zimmerman and M Fitting/R Mendelsohn

unexpand these ideas     |    start again     |     specify just one area for these philosophers


67 ideas

4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
     Full Idea: Each line of a truth table is, in effect, a model.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
     A reaction: I find this comment illuminating. It is being connected with the more complex models of modal logic. Each line of a truth table is a picture of how the world might be.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
     Full Idea: For modal logic we add to the syntax of classical logic two new unary operators □ (necessarily) and ◊ (possibly).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.3)
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: We let 'R' be the accessibility relation: xRy is read 'y is accessible from x'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
     Full Idea: The symbol ||- is used for the 'forcing' relation, as in 'Γ ||- P', which means that P is true in world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
     Full Idea: A 'prefix' is a finite sequence of positive integers. A 'prefixed formula' is an expression of the form σ X, where σ is a prefix and X is a formula. A prefix names a possible world, and σ.n names a world accessible from that one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
     Full Idea: In 'constant domain' semantics, the domain of each possible world is the same as every other; in 'varying domain' semantics, the domains need not coincide, or even overlap.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: Modern modal logic takes into consideration the way the modal relates the possible worlds, called the 'accessibility' relation. .. We let R be the accessibility relation, and xRy reads as 'y is accessible from x.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
     A reaction: There are various types of accessibility, and these define the various modal logics.
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
     Full Idea: A 'model' is a frame plus a specification of which propositional letters are true at which worlds. It is written as , where ||- is a relation between possible worlds and propositional letters. So Γ ||- P means P is true at world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
     Full Idea: A 'frame' consists of a non-empty set G, whose members are generally called possible worlds, and a binary relation R, on G, generally called the accessibility relation. We say the frame is the pair so that a single object can be talked about.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
     Full Idea: A relation R is 'reflexive' if every world is accessible from itself; 'transitive' if the first world is related to the third world (ΓRΔ and ΔRΩ → ΓRΩ); and 'symmetric' if the accessibility relation is mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.7)
     A reaction: The different systems of modal logic largely depend on how these accessibility relations are specified. There is also the 'serial' relation, which just says that any world has another world accessible to it.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
     Full Idea: Simplified S5 rules: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X. 'n' picks any world; in a) and b) 'k' asserts a new world; in c) and d) 'k' refers to a known world
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is possibly true in a world, then it is also true in some world which is accessible from that world. That is: Γ ||- ◊X ↔ for some Δ ∈ G, ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is necessarily true in a world, then it is also true in all worlds which are accessible from that world. That is: Γ ||- □X ↔ for every Δ ∈ G, if ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for conjunctions: a) if σ X ∧ Y then σ X and σ Y b) if σ ¬(X ∧ Y) then σ ¬X or σ ¬Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for biconditionals: a) if σ (X ↔ Y) then σ (X → Y) and σ (Y → X) b) if σ ¬(X ↔ Y) then σ ¬(X → Y) or σ ¬(Y → X)
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for implications: a) if σ ¬(X → Y) then σ X and σ ¬Y b) if σ X → Y then σ ¬X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for universal modality: a) if σ ¬◊ X then σ.m ¬X b) if σ □ X then σ.m X , where m refers to a world that can be seen (rather than introducing a new world).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the universal rule of □, usually read as 'necessary', only refers to worlds which can already be seen, whereas possibility (◊) asserts some thing about a new as yet unseen world.
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
     Full Idea: General tableau rule for negation: if σ ¬¬X then σ X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for disjunctions: a) if σ ¬(X ∨ Y) then σ ¬X and σ ¬Y b) if σ X ∨ Y then σ X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for existential modality: a) if σ ◊ X then σ.n X b) if σ ¬□ X then σ.n ¬X , where n introduces some new world (rather than referring to a world that can be seen).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the existential rule of ◊, usually read as 'possibly', asserts something about a new as yet unseen world, whereas □ only refers to worlds which can already be seen,
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
     Full Idea: System T reflexive rules (also for B, S4, S5): a) if σ □X then σ X b) if σ ¬◊X then σ ¬X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
     Full Idea: System D serial rules (also for T, B, S4, S5): a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System B symmetric rules (also for S5): a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4 transitive rules (also for K4, S4, S5): a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4r reversed-transitive rules (also for S5): a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
     Full Idea: The system K has no frame conditions imposed on its accessibility relation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: The system is named K in honour of Saul Kripke.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
     Full Idea: System D is usually thought of as Deontic Logic, concerning obligations and permissions. □P → P is not valid in D, since just because an action is obligatory, it does not follow that it is performed.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.12.2 Ex)
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system D has the 'serial' condition imposed on its accessibility relation - that is, every world must have some world which is accessible to it.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system T has the 'reflexive' condition imposed on its accessibility relation - that is, every world must be accessible to itself.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system K4 has the 'transitive' condition imposed on its accessibility relation - that is, if a relation holds between worlds 1 and 2 and worlds 2 and 3, it must hold between worlds 1 and 3. The relation carries over.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system B has the 'reflexive' and 'symmetric' conditions imposed on its accessibility relation - that is, every world must be accessible to itself, and any relation between worlds must be mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S4 has the 'reflexive' and 'transitive' conditions imposed on its accessibility relation - that is, every world is accessible to itself, and accessibility carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S5 has the 'reflexive', 'symmetric' and 'transitive' conditions imposed on its accessibility relation - that is, every world is self-accessible, and accessibility is mutual, and it carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: S5 has total accessibility, and hence is the most powerful system (though it might be too powerful).
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
     Full Idea: P→◊P is usually considered to be valid, but its converse, ◊P→P is not, so (by Frege's own criterion) P and possibly-P differ in conceptual content, and there is no reason why logic should not be widened to accommodate this.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.2)
     A reaction: Frege had denied that modality affected the content of a proposition (1879:p.4). The observation here is the foundation for the need for a modal logic.
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
     Full Idea: In epistemic logic the knower is treated as logically omniscient. This is puzzling because one then cannot know something and yet fail to know that one knows it (the Principle of Positive Introspection).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: This is nowadays known as the K-K Problem - to know, must you know that you know. Broadly, we find that externalists say you don't need to know that you know (so animals know things), but internalists say you do need to know that you know.
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
     Full Idea: In epistemic logic we read Υ as 'KaP: a knows that P', and ◊ as 'PaP: it is possible, for all a knows, that P' (a is an individual). For belief we read them as 'BaP: a believes that P' and 'CaP: compatible with everything a believes that P'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: [scripted capitals and subscripts are involved] Hintikka 1962 is the source of this. Fitting and Mendelsohn prefer □ to read 'a is entitled to know P', rather than 'a knows that P'.
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
     Full Idea: We introduce four future and past tense operators: FP: it will sometime be the case that P. PP: it was sometime the case that P. GP: it will always be the case that P. HP: it has always been the case that P. (P itself is untensed).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.10)
     A reaction: Temporal logic begins with A.N. Prior, and starts with □ as 'always', and ◊ as 'sometimes', but then adds these past and future divisions. Two different logics emerge, taking □ and ◊ as either past or as future.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
     Full Idea: The Converse Barcan says nothing passes out of existence in alternative situations. The Barcan says that nothing comes into existence. The two together say the same things exist no matter what the situation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.9)
     A reaction: I take the big problem to be that these reflect what it is you want to say, and that does not keep stable across a conversation, so ordinary rational discussion sometimes asserts these formulas, and 30 seconds later denies them.
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
     Full Idea: The Barcan formula corresponds to anti-monotonicity, and the Converse Barcan formula corresponds to monotonicity.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 6.3)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
     Full Idea: 'Predicate abstraction' is a key idea. It is a syntactic mechanism for abstracting a predicate from a formula, providing a scoping mechanism for constants and function symbols similar to that provided for variables by quantifiers.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], Pref)
8. Modes of Existence / D. Universals / 3. Instantiated Universals
An immanent universal is wholly present in more than one place [Zimmerman,DW]
     Full Idea: An immanent universal will routinely be 'at some distance from itself', in the sense that it is wholly present in more than one place.
     From: Dean W. Zimmerman (Distinct Indiscernibles and the Bundle Theory [1997], p.306)
     A reaction: This is the Aristotelian view, which sounds distinctly implausible in this formulation. Though I suppose redness is wholly present in a tomato, in the way that fourness is wholly present in the Horsemen of the Apocalypse. How many rednesses are there?
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
     Full Idea: Equality has caused much grief for modal logic. Many of the problems, which have struck at the heart of the coherence of modal logic, stem from the apparent violations of the Indiscernibility of Identicals.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.1)
     A reaction: Thus when I say 'I might have been three inches taller', presumably I am referring to someone who is 'identical' to me, but who lacks one of my properties. A simple solution is to say that the person is 'essentially' identical.
If only two indiscernible electrons exist, future differences must still be possible [Zimmerman,DW]
     Full Idea: If nothing existed except two electrons, which are indiscernible, it remains possible that differences will emerge later. Even if this universe has eternal symmetry, such differences are still logically, metaphysically, physically and causally possible.
     From: Dean W. Zimmerman (Distinct Indiscernibles and the Bundle Theory [1997], p.306)
     A reaction: The question then is whether the two electrons have hidden properties that make differences possible. Zimmerman assumes that 'laws' of an indeterministic kind will do the job. I doubt that. Can differences be discerned after the event?
Discernible differences at different times may just be in counterparts [Zimmerman,DW]
     Full Idea: Possible differences which may later become discernible could be treated as differences in a counterpart, which is similar to, but not identical with, the original object.
     From: Dean W. Zimmerman (Distinct Indiscernibles and the Bundle Theory [1997], p.307)
     A reaction: [compressed] This is a reply to Idea 10198, which implies that two things could never be indiscernible over time, because of their different possibilities. One must then decide issues about rigid designation and counterparts.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
     Full Idea: If □ is to be sensitive to the quality of the truth of a proposition in its scope, then it must be sensitive as to whether an object is picked out by an essential property or by a contingent one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.3)
     A reaction: This incredibly simple idea strikes me as being powerful and important. ...However, creating illustrative examples leaves me in a state of confusion. You try it. They cite '9' and 'number of planets'. But is it just nominal essence? '9' must be 9.
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
     Full Idea: The property of 'possibly being a Republican' is as much a property of Bill Clinton as is 'being a democrat'. So we don't peel off his properties from world to world. Hence the bundle theory fits our treatment of objects better than bare particulars.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.3)
     A reaction: This bundle theory is better described in recent parlance as the 'modal profile'. I am reluctant to talk of a modal truth about something as one of its 'properties'. An objects, then, is a bundle of truths?
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
     Full Idea: The main technical problem with counterpart theory is that the being-a-counterpart relation is, in general, neither symmetric nor transitive, so no natural logic of equality is forthcoming.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
     A reaction: That is, nothing is equal to a counterpart, either directly or indirectly.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / b. Heat
Work degrades into heat, but not vice versa [Close]
     Full Idea: William Thomson, Lord Kelvin, declared (in 1865) the second law of thermodynamics: mechanical work inevitably tends to degrade into heat, but not vice versa.
     From: Frank Close (Theories of Everything [2017], 3 'Perpetual')
     A reaction: The basis of entropy, which makes time an essential part of physics. Might this be the single most important fact about the physical world?
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
First Law: energy can change form, but is conserved overall [Close]
     Full Idea: The first law of thermodynamics : energy can be changed from one form to another, but is always conserved overall.
     From: Frank Close (Theories of Everything [2017], 3 'Perpetual')
     A reaction: So we have no idea what energy is, but we know it's conserved. (Daniel Bernoulli showed the greater the mean energy, the higher the temperature. James Joule showed the quantitative equivalence of heat and work p.26-7)
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / d. Entropy
Third Law: total order and minimum entropy only occurs at absolute zero [Close]
     Full Idea: The third law of thermodynamics says that a hypothetical state of total order and minimum entropy can be attained only at the absolute zero temperature, minus 273 degrees Celsius.
     From: Frank Close (Theories of Everything [2017], 3 'Arrow')
     A reaction: If temperature is energetic movement of atoms (or whatever), then obviously zero movement is the coldest it can get. So is absolute zero an energy state, or an absence of energy? I have no idea what 'total order' means.
27. Natural Reality / B. Modern Physics / 1. Relativity / a. Special relativity
All motions are relative and ambiguous, but acceleration is the same in all inertial frames [Close]
     Full Idea: There is no absolute state of rest; only relative motions are unambiguous. Contrast this with acceleration, however, which has the same magnitude in all inertial frames.
     From: Frank Close (Theories of Everything [2017], 3 'Newton's')
     A reaction: It seems important to remember this, before we start trumpeting about the whole of physics being relative. ....But see Idea 20634!
The electric and magnetic are tightly linked, and viewed according to your own motion [Close]
     Full Idea: Electric and magnetic phenomena are profoundly intertwined; what you interpret as electric or magnetic thus depends on your own motion.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: This sounds like an earlier version of special relativity.
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
The general relativity equations relate curvature in space-time to density of energy-momentum [Close]
     Full Idea: The essence of general relativity relates 'curvature in space-time' on one side of the equation to the 'density of momentum and energy' on the other. ...In full, Einstein required ten equations of this type.
     From: Frank Close (Theories of Everything [2017], 5 'Gravity')
     A reaction: Momentum involves mass, and energy is equivalent to mass (e=mc^2).
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Photon exchange drives the electro-magnetic force [Close]
     Full Idea: The exchange of photons drives the electro-magnetic force.
     From: Frank Close (Theories of Everything [2017], 6 'Superstrings')
     A reaction: So light, which we just think of as what is visible, is a mere side-effect of the engine room of nature - the core mechanism of the whole electro-magnetic field.
Electric fields have four basic laws (two by Gauss, one by Ampère, one by Faraday) [Close]
     Full Idea: Four basic laws of electric and magnetic fields: Gauss's Law (about the flux produced by a field), Gauss's law of magnets (there can be no monopoles), Ampère's Law (fields on surfaces), and Farday's Law (accelerated magnets produce fields).
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: [Highly compressed, for an overview. Close explains them]
Light isn't just emitted in quanta called photons - light is photons [Close]
     Full Idea: Planck had assumed that light is emitted in quanta called photons. Einstein went further - light is photons.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: The point is that light travels as entities which are photons, rather than the emissions being quantized packets of some other stuff.
In general relativity the energy and momentum of photons subjects them to gravity [Close]
     Full Idea: In Einstein's general theory, gravity acts also on energy and momentum, not simply on mass. For example, massless photons of light feel the gravitational attraction of the Sun and can be deflected.
     From: Frank Close (Theories of Everything [2017], 5 'Planck')
     A reaction: Ah, a puzzle solved. How come massless photons are bent by gravity?
Electro-magnetic waves travel at light speed - so light is electromagnetism! [Close]
     Full Idea: Faradays' measurements predicted the speed of electro-magnetic waves, which happened to be the speed of light, so Maxwell made an inspired leap: light is an electromagnetic wave!
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: Put that way, it doesn't sound like an 'inspired' leap, because travelling at exactly the same speed seems a pretty good indication that they are the same sort of thing. (But I'm not denying that Maxwell was a special guy!)
In QED, electro-magnetism exists in quantum states, emitting and absorbing electrons [Close]
     Full Idea: Dirac created quantum electrodynamics (QED): the universal electro-magnetic field can exist in discreet states of energy (with photons appearing and disappearing by energy excitations. This combined classical ideas, quantum theory and special relativity.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: Close says this is the theory of everything in atomic structure, but not in nuclei (which needs QCD and QFD). So if there are lots of other 'fields' (e.g. gravitational, weak, strong, Higgs), how do they all fit together? Do they talk to one another?
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
Quantum fields contain continual rapid creation and disappearance [Close]
     Full Idea: Quantum field theory implies that the vacuum of space is filled with particles and antiparticles which bubble in and out of existence on faster and faster timescales over shorter and shorter distances.
     From: Frank Close (Theories of Everything [2017], 6 'Intro')
     A reaction: Ponder this sentence until you head aches. Existence, but not as we know it, Jim. Close says calculations in QED about the electron confirm this.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Electrons get their mass by interaction with the Higgs field [Close]
     Full Idea: The electron gets its mass by interaction with the ubiquitous Higgs field.
     From: Frank Close (Theories of Everything [2017], 6 'Hierarchy')
     A reaction: I thought I understood mass until I read this. Is it just wrong to say the mass of a table is the 'amount of stuff' in it?
Dirac showed how electrons conform to special relativity [Close]
     Full Idea: In 1928 Paul Dirac discovered the quantum equation that describes the electron and conforms to the requirements special relativity theory.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: This sounds like a major step in the unification of physics. Quantum theory and General relativity remain irreconcilable.
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
Modern theories of matter are grounded in heat, work and energy [Close]
     Full Idea: The link between temperature, heat, work and energy is at the root of our historical ability to construct theories of matter, such as Newton's dynamics, while ignoring, and indeed being ignorant of - atomic dimensions.
     From: Frank Close (Theories of Everything [2017], 3 'Arrow')
     A reaction: That is, presumably, that even when you fill in the atoms, and the standard model of physics, these aspects of matter do the main explaiining (of the behaviour, rather than of the structure).
27. Natural Reality / B. Modern Physics / 5. Unified Models / a. Electro-weak unity
The Higgs field is an electroweak plasma - but we don't know what stuff it consists of [Close]
     Full Idea: In 2012 it was confirmed that we are immersed in an electroweak plasma - the Higgs field. We curently have no knowledge of what this stuff might consist of.
     From: Frank Close (Theories of Everything [2017], 4 'Higgs')
     A reaction: The second sentence has my full attention. So we don't understand a field properly until we understand the 'stuff' it is made of? So what are all the familiar fields made of? Tell me more!
27. Natural Reality / C. Space / 6. Space-Time
Space-time is indeterminate foam over short distances [Close]
     Full Idea: At very short distances, space-time itself becomes some indeterminate foam.
     From: Frank Close (Theories of Everything [2017], 6 'Intro')
     A reaction: [see Close for a bit more detail of this weird idea]
27. Natural Reality / D. Time / 1. Nature of Time / g. Growing block
Neither 'moving spotlight' nor 'growing block' views explain why we care what is present or past [Zimmerman,DW]
     Full Idea: Neither the 'moving spotlight' nor the 'growing block' view of A-theory time can explain why we care so much about whether things (such as a headache) are present or past.
     From: Dean W. Zimmerman (The Privileged Present: A-Theory [2008], 3)
     A reaction: He goes on the defend Presentism as the best version of the A-series view. You can't deny that the past is more of a 'truthmaker' than the future, so it seems to have a firmer ontological status. Deeply weird.
27. Natural Reality / D. Time / 2. Passage of Time / e. Tensed (A) series
A-theorists, unlike B-theorists, believe some sort of objective distinction between past, present and future [Zimmerman,DW]
     Full Idea: To be an A-theorist is to believe in some sort of objective distinction between what is present and past and future. ..To be a B-theorist is to deny the objectivity of our talk about past, present and future.
     From: Dean W. Zimmerman (The Privileged Present: A-Theory [2008], 2)
     A reaction: The A/B distinction originates with McTaggart. All my intuitions side with the A-theory, certainly to the extent that the present seems to be objectively privileged in some way (despite special relativity).