Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, Alexander Baumgarten and John von Neumann

unexpand these ideas     |    start again     |     specify just one area for these philosophers


14 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Von Neumann defines each number as the set of all smaller numbers [Neumann, by Blackburn]
     Full Idea: Von Neumann defines each number as the set of all smaller numbers.
     From: report of John von Neumann (works [1935]) by Simon Blackburn - Oxford Dictionary of Philosophy p.280
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is not self-evident, and seems too strong [Lavine on Neumann]
     Full Idea: Von Neumann's Limitation of Size axiom is not self-evident, and he himself admitted that it seemed too strong.
     From: comment on John von Neumann (An Axiomatization of Set Theory [1925]) by Shaughan Lavine - Understanding the Infinite VII.1
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Von Neumann wanted mathematical functions to replace sets [Neumann, by Benardete,JA]
     Full Idea: Von Neumann suggested that functions be pressed into service to replace sets.
     From: report of John von Neumann (works [1935]) by José A. Benardete - Metaphysics: the logical approach Ch.23
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Von Neumann treated cardinals as a special sort of ordinal [Neumann, by Hart,WD]
     Full Idea: Von Neumann's decision was to start with the ordinals and to treat cardinals as a special sort of ordinal.
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by William D. Hart - The Evolution of Logic 3
     A reaction: [see Hart 73-74 for an explication of this]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Von Neumann defined ordinals as the set of all smaller ordinals [Neumann, by Poundstone]
     Full Idea: At age twenty, Von Neumann devised the formal definition of ordinal numbers that is used today: an ordinal number is the set of all smaller ordinal numbers.
     From: report of John von Neumann (works [1935]) by William Poundstone - Prisoner's Dilemma 02 'Sturm'
     A reaction: I take this to be an example of an impredicative definition (not predicating something new), because it uses 'ordinal number' in the definition of ordinal number. I'm guessing the null set gets us started.
A von Neumann ordinal is a transitive set with transitive elements [Neumann, by Badiou]
     Full Idea: In Von Neumann's definition an ordinal is a transitive set in which all of the elements are transitive.
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Alain Badiou - Briefings on Existence 11
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / g. Von Neumann numbers
For Von Neumann the successor of n is n U {n} (rather than {n}) [Neumann, by Maddy]
     Full Idea: For Von Neumann the successor of n is n U {n} (rather than Zermelo's successor, which is {n}).
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Penelope Maddy - Naturalism in Mathematics I.2 n8
Von Neumann numbers are preferred, because they continue into the transfinite [Maddy on Neumann]
     Full Idea: Von Neumann's version of the natural numbers is in fact preferred because it carries over directly to the transfinite ordinals.
     From: comment on John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Penelope Maddy - Naturalism in Mathematics I.2 n9
Each Von Neumann ordinal number is the set of its predecessors [Neumann, by Lavine]
     Full Idea: Each Von Neumann ordinal number is the set of its predecessors. ...He had shown how to introduce ordinal numbers as sets, making it possible to use them without leaving the domain of sets.
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Shaughan Lavine - Understanding the Infinite V.3
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
All the axioms for mathematics presuppose set theory [Neumann]
     Full Idea: There is no axiom system for mathematics, geometry, and so forth that does not presuppose set theory.
     From: John von Neumann (An Axiomatization of Set Theory [1925]), quoted by Stewart Shapiro - Foundations without Foundationalism 8.2
     A reaction: Von Neumann was doubting whether set theory could have axioms, and hence the whole project is doomed, and we face relativism about such things. His ally was Skolem in this.
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?
21. Aesthetics / A. Aesthetic Experience / 1. Aesthetics
Baumgarten founded aesthetics in 1750 [Baumgarten, by Tolstoy]
     Full Idea: Baumgarten founded aesthetics in the year 1750.
     From: report of Alexander Baumgarten (Aesthetica [1739]) by Leo Tolstoy - What is Art? Ch.2
     A reaction: He gave it a label, separated it off from the rest of philosophy, and made taste the main focus. The philosophy of art goes back to at least Plato's 'Republic' and 'Symposium'.
21. Aesthetics / B. Nature of Art / 2. Art as Form
Beauty is an order between parts, and in relation to the whole [Baumgarten, by Tolstoy]
     Full Idea: Beauty is defined by Baumgarten as a correspondence, that is, an order of parts in their mutual relations to each other and in their relation to the whole.
     From: report of Alexander Baumgarten (Aesthetica [1739]) by Leo Tolstoy - What is Art? Ch.3
     A reaction: This may be one aspect of what is beautiful, but rather more than a nice arrangement is probably needed for art. We must distinguish flower arranging from poetic drama. Some masterpieces are rather messily arranged.
22. Metaethics / C. The Good / 1. Goodness / b. Types of good
Perfection comes through the senses (Beauty), through reason (Truth), and through moral will (Good) [Baumgarten, by Tolstoy]
     Full Idea: For Baumgarten, Beauty is the Perfect (the Absolute), recognised through the senses; Truth is the Perfect perceived through reason; Goodness is the Perfect reached by moral will.
     From: report of Alexander Baumgarten (Aesthetica [1739]) by Leo Tolstoy - What is Art? Ch.3
     A reaction: At last, after many years of searching, I have found the origin of that great trio of ideals: Beauty, Goodness and Truth. Tolstoy sneers at them, but a person could do a lot worse than spending their lives trying to promote them.