Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, Arthur N. Prior and Kenneth Kunen

unexpand these ideas     |    start again     |     specify just one area for these philosophers


19 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
We need to know the meaning of 'and', prior to its role in reasoning [Prior,AN, by Belnap]
     Full Idea: For Prior, so the moral goes, we must first have a notion of what 'and' means, independently of the role it plays as premise and as conclusion.
     From: report of Arthur N. Prior (The Runabout Inference Ticket [1960]) by Nuel D. Belnap - Tonk, Plonk and Plink p.132
     A reaction: The meaning would be given by the truth tables (the truth-conditions), whereas the role would be given by the natural deduction introduction and elimination rules. This seems to be the basic debate about logical connectives.
Prior's 'tonk' is inconsistent, since it allows the non-conservative inference A |- B [Belnap on Prior,AN]
     Full Idea: Prior's definition of 'tonk' is inconsistent. It gives us an extension of our original characterisation of deducibility which is not conservative, since in the extension (but not the original) we have, for arbitrary A and B, A |- B.
     From: comment on Arthur N. Prior (The Runabout Inference Ticket [1960]) by Nuel D. Belnap - Tonk, Plonk and Plink p.135
     A reaction: Belnap's idea is that connectives don't just rest on their rules, but also on the going concern of normal deduction.
Prior rejected accounts of logical connectives by inference pattern, with 'tonk' his absurd example [Prior,AN, by Read]
     Full Idea: Prior dislike the holism inherent in the claim that the meaning of a logical connective was determined by the inference patterns into which it validly fitted. ...His notorious example of 'tonk' (A → A-tonk-B → B) was a reductio of the view.
     From: report of Arthur N. Prior (The Runabout Inference Ticket [1960]) by Stephen Read - Thinking About Logic Ch.8
     A reaction: [The view being attacked was attributed to Gentzen]
Maybe introducing or defining logical connectives by rules of inference leads to absurdity [Prior,AN, by Hacking]
     Full Idea: Prior intended 'tonk' (a connective which leads to absurdity) as a criticism of the very idea of introducing or defining logical connectives by rules of inference.
     From: report of Arthur N. Prior (The Runabout Inference Ticket [1960], §09) by Ian Hacking - What is Logic?
7. Existence / D. Theories of Reality / 8. Facts / b. Types of fact
That Queen Anne is dead is a 'general fact', not a fact about Queen Anne [Prior,AN]
     Full Idea: The fact that Queen Anne has been dead for some years is not, in the strict sense of 'about', a fact about Queen Anne; it is not a fact about anyone or anything - it is a general fact.
     From: Arthur N. Prior (Changes in Events and Changes in Things [1968], p.13), quoted by Robin Le Poidevin - Past, Present and Future of Debate about Tense 1 b
     A reaction: He distinguishes 'general facts' (states of affairs, I think) from 'individual facts', involving some specific object. General facts seem to be what are expressed by negative existential truths, such as 'there is no Loch Ness Monster'. Useful.
8. Modes of Existence / A. Relations / 4. Formal Relations / b. Equivalence relation
An 'equivalence' relation is one which is reflexive, symmetric and transitive [Kunen]
     Full Idea: R is an equivalence relation on A iff R is reflexive, symmetric and transitive on A.
     From: Kenneth Kunen (The Foundations of Mathematics (2nd ed) [2012], I.7.1)
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?
27. Natural Reality / D. Time / 2. Passage of Time / e. Tensed (A) series
'Thank goodness that's over' is not like 'thank goodness that happened on Friday' [Prior,AN]
     Full Idea: One says 'thank goodness that is over', ..and it says something which it is impossible which any use of any tenseless copula with a date should convey. It certainly doesn't mean the same as 'thank goodness that occured on Friday June 15th 1954'.
     From: Arthur N. Prior (Changes in Events and Changes in Things [1968]), quoted by Adrian Bardon - Brief History of the Philosophy of Time 4 'Pervasive'
     A reaction: [Ref uncertain] This seems to be appealing to ordinary usage, in which tenses have huge significance. If we take time (with its past, present and future) as primitive, then tenses can have full weight. Did tenses mean anything at all to Einstein?