Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, Engelbretsen,G/Sayward,C and Jack Joslin

unexpand these ideas     |    start again     |     specify just one area for these philosophers


10 ideas

4. Formal Logic / A. Syllogistic Logic / 1. Aristotelian Logic
The four 'perfect syllogisms' are called Barbara, Celarent, Darii and Ferio [Engelbretsen/Sayward]
     Full Idea: There are four 'perfect syllogisms': Barbara (every M is P, every S is M, so every S is P); Celarent (no M is P, every S is M, so no S is P); Darii (every M is P, some S is M, so some S is P); Ferio (no M is P, some S is M, so some S is not P).
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], 8)
     A reaction: The four names are mnemonics from medieval universities.
Syllogistic logic has one rule: what is affirmed/denied of wholes is affirmed/denied of their parts [Engelbretsen/Sayward]
     Full Idea: It has often been claimed (e.g. by Leibniz) that a single rule governs all syllogistic validity, called 'dictum de omni et null', which says that what is affirmed or denied of any whole is affirmed or denied of any part of that whole.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], 8)
     A reaction: This seems to be the rule which is captured by Venn Diagrams.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Syllogistic can't handle sentences with singular terms, or relational terms, or compound sentences [Engelbretsen/Sayward]
     Full Idea: Three common kinds of sentence cannot be put into syllogistic ('categorical') form: ones using singular terms ('Mars is red'), ones using relational terms ('every painter owns some brushes'), and compound sentences.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], 8)
4. Formal Logic / A. Syllogistic Logic / 3. Term Logic
Term logic uses expression letters and brackets, and '-' for negative terms, and '+' for compound terms [Engelbretsen/Sayward]
     Full Idea: Term logic begins with expressions and two 'term functors'. Any simple letter is a 'term', any term prefixed by a minus ('-') is a 'negative term', and any pair of terms flanking a plus ('+') is a 'compound term'. Parenthese are used for grouping.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], 8)
     A reaction: [see Engelbretsen and Sayward for the full formal system]
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
In modern logic all formal validity can be characterised syntactically [Engelbretsen/Sayward]
     Full Idea: One of the key ideas of modern formal logic is that all formally valid inferences can be specified in strictly syntactic terms.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], Ch.2)
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic rests on truth and models, where constructivist logic rests on defence and refutation [Engelbretsen/Sayward]
     Full Idea: Classical logic rests on the concepts of truth and falsity (and usually makes use of a semantic theory based on models), whereas constructivist logic accounts for inference in terms of defense and refutation.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], Intro)
     A reaction: My instincts go with the classical view, which is that inferences do not depend on the human capacity to defend them, but sit there awaiting revelation. My view isn't platonist, because I take the inferences to be rooted in the physical world.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Unlike most other signs, = cannot be eliminated [Engelbretsen/Sayward]
     Full Idea: Unlike ∨, →, ↔, and ∀, the sign = is not eliminable from a logic.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], Ch.3)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Axioms are ω-incomplete if the instances are all derivable, but the universal quantification isn't [Engelbretsen/Sayward]
     Full Idea: A set of axioms is said to be ω-incomplete if, for some universal quantification, each of its instances is derivable from those axioms but the quantification is not thus derivable.
     From: Engelbretsen,G/Sayward,C (Philosophical Logic: Intro to Advanced Topics [2011], 7)
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?
28. God / B. Proving God / 2. Proofs of Reason / b. Ontological Proof critique
God can't have silly perfections, but how do we decide which ones are 'silly'? [Joslin]
     Full Idea: It is clear that God cannot have all conceivable perfections, because otherwise he would have absurd perfections (like being the perfect prawn sandwich), so a line must be drawn, and how are we to decide which perfections are appropriate and essential?
     From: Jack Joslin (talk [2006]), quoted by PG - Db (ideas)
     A reaction: This is an excellent question for curbing the absurdities of those who want to load God with every good thing that can possibly be conceived. Is the God who is also a perfect prawn sandwich more perfect than the one who isn't?