Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, George Boolos and David Liggins

unexpand these ideas     |    start again     |     specify just one area for these philosophers


44 ideas

2. Reason / F. Fallacies / 7. Ad Hominem
We should always apply someone's theory of meaning to their own utterances [Liggins]
     Full Idea: We should interpret philosophers as if their own theory of the meaning of their utterances were true, whether or not we agree with that theory.
     From: David Liggins (Nihilism without Self-Contradiction [2008], 8)
     A reaction: This seems to give legitimate grounds for some sorts of ad hominem objections. It would simply be an insult to a philosopher not to believe their theories, and then apply them to what they have said. This includes semantic theories.
3. Truth / B. Truthmakers / 2. Truthmaker Relation
Truth-maker theory can't cope with non-causal dependence [Liggins]
     Full Idea: My charge is that truth-maker theory cannot be integrated into an attractive general account of non-causal dependence.
     From: David Liggins (Truth-makers and dependence [2012], 10.6)
     A reaction: [You'll have to read Liggins to see why]
3. Truth / B. Truthmakers / 12. Rejecting Truthmakers
Truthmakers for existence is fine; otherwise maybe restrict it to synthetic truths? [Liggins]
     Full Idea: Many philosophers agree that true existential propositions have a truth-maker, but some go further, claiming that every true proposition has a truth-maker. More cautious theorists specify a class of truths, such as synthetic propositions.
     From: David Liggins (Truth-makers and dependence [2012], 10.1)
     A reaction: [compressed; Armstrong is the ambitious one, and Rodriguez-Pereyra proposes the synthetic propositions] Presumably synthetic propositions can make negative assertions, which are problematic for truth-makers.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
The logic of ZF is classical first-order predicate logic with identity [Boolos]
     Full Idea: The logic of ZF Set Theory is classical first-order predicate logic with identity.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.121)
     A reaction: This logic seems to be unable to deal with very large cardinals, precisely those that are implied by set theory, so there is some sort of major problem hovering here. Boolos is fairly neutral.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A few axioms of set theory 'force themselves on us', but most of them don't [Boolos]
     Full Idea: Maybe the axioms of extensionality and the pair set axiom 'force themselves on us' (Gödel's phrase), but I am not convinced about the axioms of infinity, union, power or replacement.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.130)
     A reaction: Boolos is perfectly happy with basic set theory, but rather dubious when very large cardinals come into the picture.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Do the Replacement Axioms exceed the iterative conception of sets? [Boolos, by Maddy]
     Full Idea: For Boolos, the Replacement Axioms go beyond the iterative conception.
     From: report of George Boolos (The iterative conception of Set [1971]) by Penelope Maddy - Naturalism in Mathematics I.3
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
The use of plurals doesn't commit us to sets; there do not exist individuals and collections [Boolos]
     Full Idea: We should abandon the idea that the use of plural forms commits us to the existence of sets/classes… Entities are not to be multiplied beyond necessity. There are not two sorts of things in the world, individuals and collections.
     From: George Boolos (To be is to be the value of a variable.. [1984]), quoted by Henry Laycock - Object
     A reaction: The problem of quantifying over sets is notoriously difficult. Try http://plato.stanford.edu/entries/object/index.html.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve sets are inconsistent: there is no set for things that do not belong to themselves [Boolos]
     Full Idea: The naïve view of set theory (that any zero or more things form a set) is natural, but inconsistent: the things that do not belong to themselves are some things that do not form a set.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.127)
     A reaction: As clear a summary of Russell's Paradox as you could ever hope for.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception says sets are formed at stages; some are 'earlier', and must be formed first [Boolos]
     Full Idea: According to the iterative conception, every set is formed at some stage. There is a relation among stages, 'earlier than', which is transitive. A set is formed at a stage if and only if its members are all formed before that stage.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.126)
     A reaction: He gives examples of the early stages, and says the conception is supposed to 'justify' Zermelo set theory. It is also supposed to make the axioms 'natural', rather than just being selected for convenience. And it is consistent.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is weak (Fs only collect is something the same size does) or strong (fewer Fs than objects) [Boolos, by Potter]
     Full Idea: Weak Limitation of Size: If there are no more Fs than Gs and the Gs form a collection, then Fs form a collection. Strong Limitation of Size: A property F fails to be collectivising iff there are as many Fs as there are objects.
     From: report of George Boolos (Iteration Again [1989]) by Michael Potter - Set Theory and Its Philosophy 13.5
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Does a bowl of Cheerios contain all its sets and subsets? [Boolos]
     Full Idea: Is there, in addition to the 200 Cheerios in a bowl, also a set of them all? And what about the vast number of subsets of Cheerios? It is haywire to think that when you have some Cheerios you are eating a set. What you are doing is: eating the Cheerios.
     From: George Boolos (To be is to be the value of a variable.. [1984], p.72)
     A reaction: In my case Boolos is preaching to the converted. I am particularly bewildered by someone (i.e. Quine) who believes that innumerable sets exist while 'having a taste for desert landscapes' in their ontology.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Boolos reinterprets second-order logic as plural logic [Boolos, by Oliver/Smiley]
     Full Idea: Boolos's conception of plural logic is as a reinterpretation of second-order logic.
     From: report of George Boolos (On Second-Order Logic [1975]) by Oliver,A/Smiley,T - What are Sets and What are they For? n5
     A reaction: Oliver and Smiley don't accept this view, and champion plural reference differently (as, I think, some kind of metalinguistic device?).
Monadic second-order logic might be understood in terms of plural quantifiers [Boolos, by Shapiro]
     Full Idea: Boolos has proposed an alternative understanding of monadic, second-order logic, in terms of plural quantifiers, which many philosophers have found attractive.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by Stewart Shapiro - Philosophy of Mathematics 3.5
Second-order logic metatheory is set-theoretic, and second-order validity has set-theoretic problems [Boolos]
     Full Idea: The metatheory of second-order logic is hopelessly set-theoretic, and the notion of second-order validity possesses many if not all of the epistemic debilities of the notion of set-theoretic truth.
     From: George Boolos (On Second-Order Logic [1975], p.45)
     A reaction: Epistemic problems arise when a logic is incomplete, because some of the so-called truths cannot be proved, and hence may be unreachable. This idea indicates Boolos's motivation for developing a theory of plural quantification.
Boolos showed how plural quantifiers can interpret monadic second-order logic [Boolos, by Linnebo]
     Full Idea: In an indisputable technical result, Boolos showed how plural quantifiers can be used to interpret monadic second-order logic.
     From: report of George Boolos (To be is to be the value of a variable.. [1984], Intro) by Øystein Linnebo - Plural Quantification Exposed Intro
Any sentence of monadic second-order logic can be translated into plural first-order logic [Boolos, by Linnebo]
     Full Idea: Boolos discovered that any sentence of monadic second-order logic can be translated into plural first-order logic.
     From: report of George Boolos (To be is to be the value of a variable.. [1984], §1) by Øystein Linnebo - Plural Quantification Exposed p.74
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
A sentence can't be a truth of logic if it asserts the existence of certain sets [Boolos]
     Full Idea: One may be of the opinion that no sentence ought to be considered as a truth of logic if, no matter how it is interpreted, it asserts that there are sets of certain sorts.
     From: George Boolos (On Second-Order Logic [1975], p.44)
     A reaction: My intuition is that in no way should any proper logic assert the existence of anything at all. Presumably interpretations can assert the existence of numbers or sets, but we should be able to identify something which is 'pure' logic. Natural deduction?
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is clearly a logical concept, and greatly enhances predicate calculus [Boolos]
     Full Idea: Indispensable to cross-reference, lacking distinctive content, and pervading thought and discourse, 'identity' is without question a logical concept. Adding it to predicate calculus significantly increases the number and variety of inferences possible.
     From: George Boolos (To be is to be the value of a variable.. [1984], p.54)
     A reaction: It is not at all clear to me that identity is a logical concept. Is 'existence' a logical concept? It seems to fit all of Boolos's criteria? I say that all he really means is that it is basic to thought, but I'm not sure it drives the reasoning process.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
'∀x x=x' only means 'everything is identical to itself' if the range of 'everything' is fixed [Boolos]
     Full Idea: One may say that '∀x x=x' means 'everything is identical to itself', but one must realise that one's answer has a determinate sense only if the reference (range) of 'everything' is fixed.
     From: George Boolos (On Second-Order Logic [1975], p.46)
     A reaction: This is the problem now discussed in the recent book 'Absolute Generality', of whether one can quantify without specifying a fixed or limited domain.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order quantifiers are just like plural quantifiers in ordinary language, with no extra ontology [Boolos, by Shapiro]
     Full Idea: Boolos proposes that second-order quantifiers be regarded as 'plural quantifiers' are in ordinary language, and has developed a semantics along those lines. In this way they introduce no new ontology.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by Stewart Shapiro - Foundations without Foundationalism 7 n32
     A reaction: This presumably has to treat simple predicates and relations as simply groups of objects, rather than having platonic existence, or something.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
We should understand second-order existential quantifiers as plural quantifiers [Boolos, by Shapiro]
     Full Idea: Standard second-order existential quantifiers pick out a class or a property, but Boolos suggests that they be understood as a plural quantifier, like 'there are objects' or 'there are people'.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by Stewart Shapiro - Philosophy of Mathematics 7.4
     A reaction: This idea has potential application to mathematics, and Lewis (1991, 1993) 'invokes it to develop an eliminative structuralism' (Shapiro).
Plural forms have no more ontological commitment than to first-order objects [Boolos]
     Full Idea: Abandon the idea that use of plural forms must always be understood to commit one to the existence of sets of those things to which the corresponding singular forms apply.
     From: George Boolos (To be is to be the value of a variable.. [1984], p.66)
     A reaction: It seems to be an open question whether plural quantification is first- or second-order, but it looks as if it is a rewriting of the first-order.
We normally formalise 'There are Fs' with singular quantification and predication, but this may be wrong [Liggins]
     Full Idea: It is quite standard to interpret sentences of the form 'There are Fs' using a singular quantifier and a singular predicate, but this tradition may be mistaken.
     From: David Liggins (Nihilism without Self-Contradiction [2008], 8)
     A reaction: Liggins is clearly in support of the use of plural quantification, referring to 'there are some xs such that'.
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Boolos invented plural quantification [Boolos, by Benardete,JA]
     Full Idea: Boolos virtually patented the new device of plural quantification.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by José A. Benardete - Logic and Ontology
     A reaction: This would be 'there are some things such that...'
5. Theory of Logic / K. Features of Logics / 4. Completeness
Weak completeness: if it is valid, it is provable. Strong: it is provable from a set of sentences [Boolos]
     Full Idea: A weak completeness theorem shows that a sentence is provable whenever it is valid; a strong theorem, that a sentence is provable from a set of sentences whenever it is a logical consequence of the set.
     From: George Boolos (On Second-Order Logic [1975], p.52)
     A reaction: So the weak version says |- φ → |= φ, and the strong versions says Γ |- φ → Γ |= φ. Presumably it is stronger if it can specify the source of the inference.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Why should compactness be definitive of logic? [Boolos, by Hacking]
     Full Idea: Boolos asks why on earth compactness, whatever its virtues, should be definitive of logic itself.
     From: report of George Boolos (On Second-Order Logic [1975]) by Ian Hacking - What is Logic? §13
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Infinite natural numbers is as obvious as infinite sentences in English [Boolos]
     Full Idea: The existence of infinitely many natural numbers seems to me no more troubling than that of infinitely many computer programs or sentences of English. There is, for example, no longest sentence, since any number of 'very's can be inserted.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.129)
     A reaction: If you really resisted an infinity of natural numbers, presumably you would also resist an actual infinity of 'very's. The fact that it is unclear what could ever stop a process doesn't guarantee that the process is actually endless.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
Mathematics and science do not require very high orders of infinity [Boolos]
     Full Idea: To the best of my knowledge nothing in mathematics or science requires the existence of very high orders of infinity.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.122)
     A reaction: He is referring to particular high orders of infinity implied by set theory. Personally I want to wield Ockham's Razor. Is being implied by set theory a sufficient reason to accept such outrageous entities into our ontology?
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Many concepts can only be expressed by second-order logic [Boolos]
     Full Idea: The notions of infinity and countability can be characterized by second-order sentences, though not by first-order sentences (as compactness and Skolem-Löwenheim theorems show), .. as well as well-ordering, progression, ancestral and identity.
     From: George Boolos (On Second-Order Logic [1975], p.48)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematics isn't surprising, given that we experience many objects as abstract [Boolos]
     Full Idea: It is no surprise that we should be able to reason mathematically about many of the things we experience, for they are already 'abstract'.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.129)
     A reaction: He has just given a list of exemplary abstract objects (Idea 10489), but I think there is a more interesting idea here - that our experience of actual physical objects is to some extent abstract, as soon as it is conceptualised.
7. Existence / A. Nature of Existence / 5. Reason for Existence
Either p is true or not-p is true, so something is true, so something exists [Liggins]
     Full Idea: Either p or not-p. If p, then the proposition 'p' is true. If not p, then the proposition 'not p' is true. Either way, something is true. Thus something exists.
     From: David Liggins (Truth-makers and dependence [2012], 10.3 n5)
     A reaction: Liggins offers this dodgy argument as an objection to conceptual truths having truth-makers.
7. Existence / C. Structure of Existence / 1. Grounding / b. Relata of grounding
The dependence of {Socrates} on Socrates involves a set and a philosopher, not facts [Liggins]
     Full Idea: The dependence of {Socrates} on Socrates appears to involve a set and a philosopher, neither of which is a fact.
     From: David Liggins (Truth-makers and dependence [2012], 10.6)
     A reaction: He points out that defenders of facts as the basis of dependence could find a suitable factual paraphrase here. Socrates is just Socrates, but the singleton has to be understood in a particular way to generate the dependence.
7. Existence / C. Structure of Existence / 4. Ontological Dependence
Non-causal dependence is at present only dimly understood [Liggins]
     Full Idea: Non-causal dependence is at present only dimly understood.
     From: David Liggins (Truth-makers and dependence [2012], 10.8)
     A reaction: Not very helpful, you may be thinking, but it is always helpful to know where we have got to in the enquiry.
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
Necessities supervene on everything, but don't depend on everything [Liggins]
     Full Idea: Necessities supervene upon everything, but they do not depend on everything.
     From: David Liggins (Truth-makers and dependence [2012], 10.4)
     A reaction: I'm not sure if merely existing together counts as sufficiently close to be 'supervenience'. If 2+2 necessitates 4, that hardly seems to 'supervene' on the Eiffel Tower. If so, how close must things be to qualify for supervenience?
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
First- and second-order quantifiers are two ways of referring to the same things [Boolos]
     Full Idea: Ontological commitment is carried by first-order quantifiers; a second-order quantifier needn't be taken to be a first-order quantifier in disguise, having special items, collections, as its range. They are two ways of referring to the same things.
     From: George Boolos (To be is to be the value of a variable.. [1984], p.72)
     A reaction: If second-order quantifiers are just a way of referring, then we can see first-order quantifiers that way too, so we could deny 'objects'.
8. Modes of Existence / D. Universals / 1. Universals
It is lunacy to think we only see ink-marks, and not word-types [Boolos]
     Full Idea: It's a kind of lunacy to think that sound scientific philosophy demands that we think that we see ink-tracks but not words, i.e. word-types.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.128)
     A reaction: This seems to link him with Armstrong's mockery of 'ostrich nominalism'. There seems to be some ambiguity with the word 'see' in this disagreement. When we look at very ancient scratches on stones, why don't we always 'see' if it is words?
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
I am a fan of abstract objects, and confident of their existence [Boolos]
     Full Idea: I am rather a fan of abstract objects, and confident of their existence. Smaller numbers, sets and functions don't offend my sense of reality.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.128)
     A reaction: The great Boolos is rather hard to disagree with, but I disagree. Logicians love abstract objects, indeed they would almost be out of a job without them. It seems to me they smuggle them into our ontology by redefining either 'object' or 'exists'.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
We deal with abstract objects all the time: software, poems, mistakes, triangles.. [Boolos]
     Full Idea: We twentieth century city dwellers deal with abstract objects all the time, such as bank balances, radio programs, software, newspaper articles, poems, mistakes, triangles.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.129)
     A reaction: I find this claim to be totally question-begging, and typical of a logician. The word 'object' gets horribly stretched in these discussions. We can create concepts which have all the logical properties of objects. Maybe they just 'subsist'?
9. Objects / C. Structure of Objects / 8. Parts of Objects / a. Parts of objects
Nihilists needn't deny parts - they can just say that some of the xs are among the ys [Liggins]
     Full Idea: We can interpret '..is a part of..' as '..are among..': the xs are a part of the ys just when the xs are among the ys (though if the ys are 'one' then they would not have parts).
     From: David Liggins (Nihilism without Self-Contradiction [2008], 9)
     A reaction: The trouble is that this still leaves us with gerrymandered 'parts', in the form of xs that are scattered randomly among the ys. That's not what we mean by 'part'. No account of identity works if it leaves out coherent structure.
14. Science / D. Explanation / 1. Explanation / a. Explanation
'Because' can signal an inference rather than an explanation [Liggins]
     Full Idea: 'Because' can signal an inference rather than an explanation.
     From: David Liggins (Truth-makers and dependence [2012], 10.5)
     A reaction: Aristotle starts from words like 'why?', but it can be a deceptive approach to explanation.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Value, constitution and realisation are non-causal dependences that explain [Liggins]
     Full Idea: 'It is wrong because it produces pain for fun', and 'these constitute a table because they are arranged tablewise', and 'tea is poisonous because it contains arsenic' are clearly non-causal uses of 'because', and neither are they conceptual.
     From: David Liggins (Truth-makers and dependence [2012], 10.4)
     A reaction: The general line seems to be that any form of determination will underwrite an explanation. He talks later of the 'wrongmaker' and 'poisonmaker' relationships to add to the 'truthmaker'. The table example is the 'object-maker' dependence relation.
If explanations track dependence, then 'determinative' explanations seem to exist [Liggins]
     Full Idea: If explanation often tracks dependence, then we have a theoretical reason to expect such explanations to exist. Let us call such explanations 'determinative'.
     From: David Liggins (Truth-makers and dependence [2012], 10.4)
     A reaction: There seems to be an emerging understanding that this 'determination' relation is central to all of explanation - with causal explanations, for example, being a particular instance of it. I like it. These are real, not conventional, explanations.
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
An 'abstraction principle' says two things are identical if they are 'equivalent' in some respect [Boolos]
     Full Idea: Hume's Principle has a structure Boolos calls an 'abstraction principle'. Within the scope of two universal quantifiers, a biconditional connects an identity between two things and an equivalence relation. It says we don't care about other differences.
     From: George Boolos (Is Hume's Principle analytic? [1997]), quoted by Michèle Friend - Introducing the Philosophy of Mathematics 3.7
     A reaction: This seems to be the traditional principle of abstraction by ignoring some properties, but dressed up in the clothes of formal logic. Frege tries to eliminate psychology, but Boolos implies that what we 'care about' is relevant.