Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, Jan Westerhoff and Marcus Rossberg

unexpand these ideas     |    start again     |     specify just one area for these philosophers


25 ideas

5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic needs the sets, and its consequence has epistemological problems [Rossberg]
     Full Idea: Second-order logic raises doubts because of its ontological commitment to the set-theoretic hierarchy, and the allegedly problematic epistemic status of the second-order consequence relation.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §1)
     A reaction: The 'epistemic' problem is whether you can know the truths, given that the logic is incomplete, and so they cannot all be proved. Rossberg defends second-order logic against the second problem. A third problem is that it may be mathematics.
Henkin semantics has a second domain of predicates and relations (in upper case) [Rossberg]
     Full Idea: Henkin semantics (for second-order logic) specifies a second domain of predicates and relations for the upper case constants and variables.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This second domain is restricted to predicates and relations which are actually instantiated in the model. Second-order logic is complete with this semantics. Cf. Idea 10756.
There are at least seven possible systems of semantics for second-order logic [Rossberg]
     Full Idea: In addition to standard and Henkin semantics for second-order logic, one might also employ substitutional or game-theoretical or topological semantics, or Boolos's plural interpretation, or even a semantics inspired by Lesniewski.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This is helpful in seeing the full picture of what is going on in these logical systems.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Logical consequence is intuitively semantic, and captured by model theory [Rossberg]
     Full Idea: Logical consequence is intuitively taken to be a semantic notion, ...and it is therefore the formal semantics, i.e. the model theory, that captures logical consequence.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: If you come at the issue from normal speech, this seems right, but if you start thinking about the necessity of logical consequence, that formal rules and proof-theory seem to be the foundation.
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Γ |- S says S can be deduced from Γ; Γ |= S says a good model for Γ makes S true [Rossberg]
     Full Idea: Deductive consequence, written Γ|-S, is loosely read as 'the sentence S can be deduced from the sentences Γ', and semantic consequence Γ|=S says 'all models that make Γ true make S true as well'.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: We might read |= as 'true in the same model as'. What is the relation, though, between the LHS and the RHS? They seem to be mutually related to some model, but not directly to one another.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
In proof-theory, logical form is shown by the logical constants [Rossberg]
     Full Idea: A proof-theorist could insist that the logical form of a sentence is exhibited by the logical constants that it contains.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §2)
     A reaction: You have to first get to the formal logical constants, rather than the natural language ones. E.g. what is the truth table for 'but'? There is also the matter of the quantifiers and the domain, and distinguishing real objects and predicates from bogus.
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
We negate predicates but do not negate names [Westerhoff]
     Full Idea: We negate predicates but do not negate names.
     From: Jan Westerhoff (Ontological Categories [2005], §88)
     A reaction: This is a point for anyone like Ramsey who wants to collapse the distinction between particulars and universals, or singular terms and their predicates.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A model is a domain, and an interpretation assigning objects, predicates, relations etc. [Rossberg]
     Full Idea: A standard model is a set of objects called the 'domain', and an interpretation function, assigning objects in the domain to names, subsets to predicate letters, subsets of the Cartesian product of the domain with itself to binary relation symbols etc.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: The model actually specifies which objects have which predicates, and which objects are in which relations. Tarski's account of truth in terms of 'satisfaction' seems to be just a description of those pre-decided facts.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
If models of a mathematical theory are all isomorphic, it is 'categorical', with essentially one model [Rossberg]
     Full Idea: A mathematical theory is 'categorical' if, and only if, all of its models are isomorphic. Such a theory then essentially has just one model, the standard one.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: So the term 'categorical' is gradually replacing the much-used phrase 'up to isomorphism'.
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness can always be achieved by cunning model-design [Rossberg]
     Full Idea: All that should be required to get a semantics relative to which a given deductive system is complete is a sufficiently cunning model-theorist.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §5)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
A deductive system is only incomplete with respect to a formal semantics [Rossberg]
     Full Idea: No deductive system is semantically incomplete in and of itself; rather a deductive system is incomplete with respect to a specified formal semantics.
     From: Marcus Rossberg (First-order Logic, 2nd-order, Completeness [2004], §3)
     A reaction: This important point indicates that a system might be complete with one semantics and incomplete with another. E.g. second-order logic can be made complete by employing a 'Henkin semantics'.
7. Existence / E. Categories / 1. Categories
Categories can be ordered by both containment and generality [Westerhoff]
     Full Idea: Categories are usually not assumed to be ordered by containment, but also be generality.
     From: Jan Westerhoff (Ontological Categories [2005], §02)
     A reaction: I much prefer generality, which is responsive to the full picture, whereas containment seems to appeal too much to the orderly and formalised mind. Containments overlap, so we can't dream of a perfectly neat system.
How far down before we are too specialised to have a category? [Westerhoff]
     Full Idea: How far down are we allowed to go before the categories become too special to qualify as ontological categories?
     From: Jan Westerhoff (Ontological Categories [2005], Intro)
     A reaction: A very nice question, because we can't deny a category to a set with only one member, otherwise the last surviving dodo would not have been a dodo.
Maybe objects in the same category have the same criteria of identity [Westerhoff]
     Full Idea: There is an idea that objects belonging to the same category have the same criteria of identity. This view was first explicitly endorsed by Frege (1884), and was later systematized by Dummett (1981).
     From: Jan Westerhoff (Ontological Categories [2005], Intro)
     A reaction: This approach is based on identity between equivalence classes. Westerhoff says it means, implausibly, that the resulting categories cannot share properties.
Categories are base-sets which are used to construct states of affairs [Westerhoff]
     Full Idea: My fundamental idea is that 'form-sets' are intersubstitutable constituents of states of affairs with the same form, and 'base-sets' are special form-sets which can be used to construct other form-sets. Ontological categories are the base-sets.
     From: Jan Westerhoff (Ontological Categories [2005], Intro)
     A reaction: The spirit of this is, of course, to try to achieve the kind of rigour that is expected in contemporary professional philosophy, by aiming for some sort of axiom-system that is related to a well established precise discipline like set theory. Maybe.
Categories are held to explain why some substitutions give falsehood, and others meaninglessness [Westerhoff]
     Full Idea: It is usually assumed of ontological categories that they can explain why certain substitutions make a statement false ('prime' for 'odd'), while others make it meaningless ('sweet' for 'odd', of numbers).
     From: Jan Westerhoff (Ontological Categories [2005], §05)
     A reaction: So there is a strong link between big ontological questions, and Ryle's famous identification of the 'category mistake'. The phenomenon of the category mistake is undeniable, and should make us sympathetic to the idea of categories.
Categories systematize our intuitions about generality, substitutability, and identity [Westerhoff]
     Full Idea: Systems of ontological categories are systematizations of our intuitions about generality, intersubstitutability, and identity.
     From: Jan Westerhoff (Ontological Categories [2005], §23)
     A reaction: I think we might be able to concede this without conceding the relativism about categories which Westerhoff espouses. I would claim that our 'intuitions' are pretty accurate about the joints of nature, and hence accurate about these criteria.
Categories as generalities don't give a criterion for a low-level cut-off point [Westerhoff]
     Full Idea: Categories in terms of generality, dependence and containment are unsatisfactory because of the 'cut-off point problem': they don't give an account of how far down the order we can go and be sure we are still dealing with categories.
     From: Jan Westerhoff (Ontological Categories [2005], §27)
     A reaction: I don't see why this should be a devastating objection to any theory. I have a very clear notion of a human being, but a very hazy notion of how far back towards its conception a human being extends.
7. Existence / E. Categories / 2. Categorisation
The aim is that everything should belong in some ontological category or other [Westerhoff]
     Full Idea: It seems to be one of the central points of constructing systems of ontological categories that everything can be placed in some category or other.
     From: Jan Westerhoff (Ontological Categories [2005], §49)
     A reaction: After initial resistance to this, I suppose I have to give in. The phoenix (a unique mythological bird) is called a 'phoenix', though it might just be called 'John' (cf. God). If there were another phoenix, we would know how to categorise it.
7. Existence / E. Categories / 3. Proposed Categories
All systems have properties and relations, and most have individuals, abstracta, sets and events [Westerhoff]
     Full Idea: Surveyed ontological systems show overlaps: properties and relations turn up in every system; individuals form part of five systems; abstracta, collections/sets and events are in four; facts are in two.
     From: Jan Westerhoff (Ontological Categories [2005], §02)
     A reaction: Westerhoff is a hero for doing such a useful survey. Of course, Quine challenges properties, and relations are commonly given a reductive analysis. Individuals can be challenged, and abstracta reduced. Sets are fictions. Events or facts? Etc.
7. Existence / E. Categories / 5. Category Anti-Realism
Ontological categories are like formal axioms, not unique and with necessary membership [Westerhoff]
     Full Idea: I deny the absolutism of a unique system of ontological categories and the essentialist view of membership in ontological categories as necessary features. ...I regard ontological categories as similar to axioms of formalized theories.
     From: Jan Westerhoff (Ontological Categories [2005], Intro)
     A reaction: The point is that modern axioms are not fundamental self-evident truths, but an economic set of basic statements from which some system can be derived. There may be no unique set of axioms for a formal system.
Categories merely systematise, and are not intrinsic to objects [Westerhoff]
     Full Idea: My conclusion is that categories are relativistic, used for systematization, and that it is not an intrinsic feature of an object to belong to a category, and that there is no fundamental distinction between individuals and properties.
     From: Jan Westerhoff (Ontological Categories [2005], Intro)
     A reaction: [compressed] He calls his second conclusion 'anti-essentialist', but I think we can still get an account of (explanatory) essence while agreeing with his relativised view of categories. Wiggins might be his main opponent.
A thing's ontological category depends on what else exists, so it is contingent [Westerhoff]
     Full Idea: What ontological category a thing belongs to is not dependent on its inner nature, but dependent on what other things there are in the world, and this is a contingent matter.
     From: Jan Westerhoff (Ontological Categories [2005], §89)
     A reaction: This is aimed at those, like Wiggins, who claim that category is essential to a thing, and there is no possible world in which that things could belong to another category. Sounds good, till you try to come up with examples.
9. Objects / D. Essence of Objects / 5. Essence as Kind
Essential kinds may be too specific to provide ontological categories [Westerhoff]
     Full Idea: Essential kinds can be very specific, and arguably too specific for the purposes of ontological categories.
     From: Jan Westerhoff (Ontological Categories [2005], §27)
     A reaction: Interesting. There doesn't seem to be any precise guideline as to how specific an essential kind might be. In scientific essentialism, each of the isotopes of tin has a distinct essence, but why should they not be categories
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?