Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, Jan Westerhoff and Wilfrid Hodges

unexpand these ideas     |    start again     |     specify just one area for these philosophers


31 ideas

2. Reason / D. Definition / 7. Contextual Definition
The idea that groups of concepts could be 'implicitly defined' was abandoned [Hodges,W]
     Full Idea: Late nineteenth century mathematicians said that, although plus, minus and 0 could not be precisely defined, they could be partially 'implicitly defined' as a group. This nonsense was rejected by Frege and others, as expressed in Russell 1903.
     From: Wilfrid Hodges (Model Theory [2005], 2)
     A reaction: [compressed] This is helpful in understanding what is going on in Frege's 'Grundlagen'. I won't challenge Hodges's claim that such definitions are nonsense, but there is a case for understanding groups of concepts together.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is the study of sound argument, or of certain artificial languages (or applying the latter to the former) [Hodges,W]
     Full Idea: A logic is a collection of closely related artificial languages, and its older meaning is the study of the rules of sound argument. The languages can be used as a framework for studying rules of argument.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.1)
     A reaction: [Hodges then says he will stick to the languages] The suspicion is that one might confine the subject to the artificial languages simply because it is easier, and avoids the tricky philosophical questions. That approximates to computer programming.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Since first-order languages are complete, |= and |- have the same meaning [Hodges,W]
     Full Idea: In first-order languages the completeness theorem tells us that T |= φ holds if and only if there is a proof of φ from T (T |- φ). Since the two symbols express the same relationship, theorist often just use |- (but only for first-order!).
     From: Wilfrid Hodges (Model Theory [2005], 3)
     A reaction: [actually no spaces in the symbols] If you are going to study this kind of theory of logic, the first thing you need to do is sort out these symbols, which isn't easy!
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
|= in model-theory means 'logical consequence' - it holds in all models [Hodges,W]
     Full Idea: If every structure which is a model of a set of sentences T is also a model of one of its sentences φ, then this is known as the model-theoretic consequence relation, and is written T |= φ. Not to be confused with |= meaning 'satisfies'.
     From: Wilfrid Hodges (Model Theory [2005], 3)
     A reaction: See also Idea 10474, which gives the other meaning of |=, as 'satisfies'. The symbol is ALSO used in propositional logical, to mean 'tautologically implies'! Sort your act out, logicians.
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
We negate predicates but do not negate names [Westerhoff]
     Full Idea: We negate predicates but do not negate names.
     From: Jan Westerhoff (Ontological Categories [2005], §88)
     A reaction: This is a point for anyone like Ramsey who wants to collapse the distinction between particulars and universals, or singular terms and their predicates.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
A formula needs an 'interpretation' of its constants, and a 'valuation' of its variables [Hodges,W]
     Full Idea: To have a truth-value, a first-order formula needs an 'interpretation' (I) of its constants, and a 'valuation' (ν) of its variables. Something in the world is attached to the constants; objects are attached to variables.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.3)
There are three different standard presentations of semantics [Hodges,W]
     Full Idea: Semantic rules can be presented in 'Tarski style', where the interpretation-plus-valuation is reduced to the same question for simpler formulas, or the 'Henkin-Hintikka style' in terms of games, or the 'Barwise-Etchemendy style' for computers.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.3)
     A reaction: I haven't yet got the hang of the latter two, but I note them to map the territory.
I |= φ means that the formula φ is true in the interpretation I [Hodges,W]
     Full Idea: I |= φ means that the formula φ is true in the interpretation I.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.5)
     A reaction: [There should be no space between the vertical and the two horizontals!] This contrasts with |-, which means 'is proved in'. That is a syntactic or proof-theoretic symbol, whereas |= is a semantic symbol (involving truth).
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
|= should be read as 'is a model for' or 'satisfies' [Hodges,W]
     Full Idea: The symbol in 'I |= S' reads that if the interpretation I (about word meaning) happens to make the sentence S state something true, then I 'is a model for' S, or I 'satisfies' S.
     From: Wilfrid Hodges (Model Theory [2005], 1)
     A reaction: Unfortunately this is not the only reading of the symbol |= [no space between | and =!], so care and familiarity are needed, but this is how to read it when dealing with models. See also Idea 10477.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory studies formal or natural language-interpretation using set-theory [Hodges,W]
     Full Idea: Model theory is the study of the interpretation of any language, formal or natural, by means of set-theoretic structures, with Tarski's truth definition as a paradigm.
     From: Wilfrid Hodges (Model Theory [2005], Intro)
     A reaction: My attention is caught by the fact that natural languages are included. Might we say that science is model theory for English? That sounds like Quine's persistent message.
A 'structure' is an interpretation specifying objects and classes of quantification [Hodges,W]
     Full Idea: A 'structure' in model theory is an interpretation which explains what objects some expressions refer to, and what classes some quantifiers range over.
     From: Wilfrid Hodges (Model Theory [2005], 1)
     A reaction: He cites as examples 'first-order structures' used in mathematical model theory, and 'Kripke structures' used in model theory for modal logic. A structure is also called a 'universe'.
Models in model theory are structures, not sets of descriptions [Hodges,W]
     Full Idea: The models in model-theory are structures, but there is also a common use of 'model' to mean a formal theory which describes and explains a phenomenon, or plans to build it.
     From: Wilfrid Hodges (Model Theory [2005], 5)
     A reaction: Hodges is not at all clear here, but the idea seems to be that model-theory offers a set of objects and rules, where the common usage offers a set of descriptions. Model-theory needs homomorphisms to connect models to things,
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Up Löwenheim-Skolem: if infinite models, then arbitrarily large models [Hodges,W]
     Full Idea: Upward Löwenheim-Skolem: every first-order theory with infinite models has arbitrarily large models.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
Down Löwenheim-Skolem: if a countable language has a consistent theory, that has a countable model [Hodges,W]
     Full Idea: Downward Löwenheim-Skolem (the weakest form): If L is a first-order language with at most countably many formulas, and T is a consistent theory in L. Then T has a model with at most countably many elements.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
5. Theory of Logic / K. Features of Logics / 6. Compactness
If a first-order theory entails a sentence, there is a finite subset of the theory which entails it [Hodges,W]
     Full Idea: Compactness Theorem: suppose T is a first-order theory, ψ is a first-order sentence, and T entails ψ. Then there is a finite subset U of T such that U entails ψ.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.10)
     A reaction: If entailment is possible, it can be done finitely.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
First-order logic can't discriminate between one infinite cardinal and another [Hodges,W]
     Full Idea: First-order logic is hopeless for discriminating between one infinite cardinal and another.
     From: Wilfrid Hodges (Model Theory [2005], 4)
     A reaction: This seems rather significant, since mathematics largely relies on first-order logic for its metatheory. Personally I'm tempted to Ockham's Razor out all these super-infinities, but mathematicians seem to make use of them.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
A 'set' is a mathematically well-behaved class [Hodges,W]
     Full Idea: A 'set' is a mathematically well-behaved class.
     From: Wilfrid Hodges (First-Order Logic [2001], 1.6)
7. Existence / E. Categories / 1. Categories
Categories can be ordered by both containment and generality [Westerhoff]
     Full Idea: Categories are usually not assumed to be ordered by containment, but also be generality.
     From: Jan Westerhoff (Ontological Categories [2005], §02)
     A reaction: I much prefer generality, which is responsive to the full picture, whereas containment seems to appeal too much to the orderly and formalised mind. Containments overlap, so we can't dream of a perfectly neat system.
How far down before we are too specialised to have a category? [Westerhoff]
     Full Idea: How far down are we allowed to go before the categories become too special to qualify as ontological categories?
     From: Jan Westerhoff (Ontological Categories [2005], Intro)
     A reaction: A very nice question, because we can't deny a category to a set with only one member, otherwise the last surviving dodo would not have been a dodo.
Maybe objects in the same category have the same criteria of identity [Westerhoff]
     Full Idea: There is an idea that objects belonging to the same category have the same criteria of identity. This view was first explicitly endorsed by Frege (1884), and was later systematized by Dummett (1981).
     From: Jan Westerhoff (Ontological Categories [2005], Intro)
     A reaction: This approach is based on identity between equivalence classes. Westerhoff says it means, implausibly, that the resulting categories cannot share properties.
Categories are base-sets which are used to construct states of affairs [Westerhoff]
     Full Idea: My fundamental idea is that 'form-sets' are intersubstitutable constituents of states of affairs with the same form, and 'base-sets' are special form-sets which can be used to construct other form-sets. Ontological categories are the base-sets.
     From: Jan Westerhoff (Ontological Categories [2005], Intro)
     A reaction: The spirit of this is, of course, to try to achieve the kind of rigour that is expected in contemporary professional philosophy, by aiming for some sort of axiom-system that is related to a well established precise discipline like set theory. Maybe.
Categories are held to explain why some substitutions give falsehood, and others meaninglessness [Westerhoff]
     Full Idea: It is usually assumed of ontological categories that they can explain why certain substitutions make a statement false ('prime' for 'odd'), while others make it meaningless ('sweet' for 'odd', of numbers).
     From: Jan Westerhoff (Ontological Categories [2005], §05)
     A reaction: So there is a strong link between big ontological questions, and Ryle's famous identification of the 'category mistake'. The phenomenon of the category mistake is undeniable, and should make us sympathetic to the idea of categories.
Categories systematize our intuitions about generality, substitutability, and identity [Westerhoff]
     Full Idea: Systems of ontological categories are systematizations of our intuitions about generality, intersubstitutability, and identity.
     From: Jan Westerhoff (Ontological Categories [2005], §23)
     A reaction: I think we might be able to concede this without conceding the relativism about categories which Westerhoff espouses. I would claim that our 'intuitions' are pretty accurate about the joints of nature, and hence accurate about these criteria.
Categories as generalities don't give a criterion for a low-level cut-off point [Westerhoff]
     Full Idea: Categories in terms of generality, dependence and containment are unsatisfactory because of the 'cut-off point problem': they don't give an account of how far down the order we can go and be sure we are still dealing with categories.
     From: Jan Westerhoff (Ontological Categories [2005], §27)
     A reaction: I don't see why this should be a devastating objection to any theory. I have a very clear notion of a human being, but a very hazy notion of how far back towards its conception a human being extends.
7. Existence / E. Categories / 2. Categorisation
The aim is that everything should belong in some ontological category or other [Westerhoff]
     Full Idea: It seems to be one of the central points of constructing systems of ontological categories that everything can be placed in some category or other.
     From: Jan Westerhoff (Ontological Categories [2005], §49)
     A reaction: After initial resistance to this, I suppose I have to give in. The phoenix (a unique mythological bird) is called a 'phoenix', though it might just be called 'John' (cf. God). If there were another phoenix, we would know how to categorise it.
7. Existence / E. Categories / 3. Proposed Categories
All systems have properties and relations, and most have individuals, abstracta, sets and events [Westerhoff]
     Full Idea: Surveyed ontological systems show overlaps: properties and relations turn up in every system; individuals form part of five systems; abstracta, collections/sets and events are in four; facts are in two.
     From: Jan Westerhoff (Ontological Categories [2005], §02)
     A reaction: Westerhoff is a hero for doing such a useful survey. Of course, Quine challenges properties, and relations are commonly given a reductive analysis. Individuals can be challenged, and abstracta reduced. Sets are fictions. Events or facts? Etc.
7. Existence / E. Categories / 5. Category Anti-Realism
Ontological categories are like formal axioms, not unique and with necessary membership [Westerhoff]
     Full Idea: I deny the absolutism of a unique system of ontological categories and the essentialist view of membership in ontological categories as necessary features. ...I regard ontological categories as similar to axioms of formalized theories.
     From: Jan Westerhoff (Ontological Categories [2005], Intro)
     A reaction: The point is that modern axioms are not fundamental self-evident truths, but an economic set of basic statements from which some system can be derived. There may be no unique set of axioms for a formal system.
Categories merely systematise, and are not intrinsic to objects [Westerhoff]
     Full Idea: My conclusion is that categories are relativistic, used for systematization, and that it is not an intrinsic feature of an object to belong to a category, and that there is no fundamental distinction between individuals and properties.
     From: Jan Westerhoff (Ontological Categories [2005], Intro)
     A reaction: [compressed] He calls his second conclusion 'anti-essentialist', but I think we can still get an account of (explanatory) essence while agreeing with his relativised view of categories. Wiggins might be his main opponent.
A thing's ontological category depends on what else exists, so it is contingent [Westerhoff]
     Full Idea: What ontological category a thing belongs to is not dependent on its inner nature, but dependent on what other things there are in the world, and this is a contingent matter.
     From: Jan Westerhoff (Ontological Categories [2005], §89)
     A reaction: This is aimed at those, like Wiggins, who claim that category is essential to a thing, and there is no possible world in which that things could belong to another category. Sounds good, till you try to come up with examples.
9. Objects / D. Essence of Objects / 5. Essence as Kind
Essential kinds may be too specific to provide ontological categories [Westerhoff]
     Full Idea: Essential kinds can be very specific, and arguably too specific for the purposes of ontological categories.
     From: Jan Westerhoff (Ontological Categories [2005], §27)
     A reaction: Interesting. There doesn't seem to be any precise guideline as to how specific an essential kind might be. In scientific essentialism, each of the isotopes of tin has a distinct essence, but why should they not be categories
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?