Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, John P. Burgess and Kurt Gdel

unexpand these ideas     |    start again     |     specify just one area for these philosophers


75 ideas

2. Reason / A. Nature of Reason / 1. On Reason
For clear questions posed by reason, reason can also find clear answers [Gödel]
     Full Idea: I uphold the belief that for clear questions posed by reason, reason can also find clear answers.
     From: Kurt Gödel (works [1930]), quoted by Peter Koellner - On the Question of Absolute Undecidability 1.5
     A reaction: [written in 1961] This contradicts the implication normally taken from his much earlier Incompleteness Theorems.
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative Definitions refer to the totality to which the object itself belongs [Gödel]
     Full Idea: Impredicative Definitions are definitions of an object by reference to the totality to which the object itself (and perhaps also things definable only in terms of that object) belong.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], n 13)
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
     Full Idea: Gödel's proof wrought an abrupt turn in the philosophy of mathematics. We had supposed that truth, in mathematics, consisted in provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Willard Quine - Forward to Gödel's Unpublished
     A reaction: This explains the crisis in the early 1930s, which Tarski's theory appeared to solve.
4. Formal Logic / C. Predicate Calculus PC / 3. Completeness of PC
Gödel proved the completeness of first order predicate logic in 1930 [Gödel, by Walicki]
     Full Idea: Gödel proved the completeness of first order predicate logic in his doctoral dissertation of 1930.
     From: report of Kurt Gödel (Completeness of Axioms of Logic [1930]) by Michal Walicki - Introduction to Mathematical Logic History E.2.2
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
With four tense operators, all complex tenses reduce to fourteen basic cases [Burgess]
     Full Idea: Fand P as 'will' and 'was', G as 'always going to be', H as 'always has been', all tenses reduce to 14 cases: the past series, each implying the next, FH,H,PH,HP,P,GP, and the future series PG,G,FG,GF,F,HF, plus GH=HG implying all, FP=PF which all imply.
     From: John P. Burgess (Philosophical Logic [2009], 2.8)
     A reaction: I have tried to translate the fourteen into English, but am not quite confident enough to publish them here. I leave it as an exercise for the reader.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The temporal Barcan formulas fix what exists, which seems absurd [Burgess]
     Full Idea: In temporal logic, if the converse Barcan formula holds then nothing goes out of existence, and the direct Barcan formula holds if nothing ever comes into existence. These results highlight the intuitive absurdity of the Barcan formulas.
     From: John P. Burgess (Philosophical Logic [2009], 2.9)
     A reaction: This is my reaction to the modal cases as well - the absurdity of thinking that no actually nonexistent thing might possibly have existed, or that the actual existents might not have existed. Williamson seems to be the biggest friend of the formulas.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Is classical logic a part of intuitionist logic, or vice versa? [Burgess]
     Full Idea: From one point of view intuitionistic logic is a part of classical logic, missing one axiom, from another classical logic is a part of intuitionistic logic, missing two connectives, intuitionistic v and →
     From: John P. Burgess (Philosophical Logic [2009], 6.4)
It is still unsettled whether standard intuitionist logic is complete [Burgess]
     Full Idea: The question of the completeness of the full intuitionistic logic for its intended interpretation is not yet fully resolved.
     From: John P. Burgess (Philosophical Logic [2009], 6.9)
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
Relevance logic's → is perhaps expressible by 'if A, then B, for that reason' [Burgess]
     Full Idea: The relevantist logician's → is perhaps expressible by 'if A, then B, for that reason'.
     From: John P. Burgess (Philosophical Logic [2009], 5.8)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We perceive the objects of set theory, just as we perceive with our senses [Gödel]
     Full Idea: We have something like perception of the objects of set theory, shown by the axioms forcing themselves on us as being true. I don't see why we should have less confidence in this kind of perception (i.e. mathematical intuition) than in sense perception.
     From: Kurt Gödel (What is Cantor's Continuum Problem? [1964], p.483), quoted by Michčle Friend - Introducing the Philosophy of Mathematics 2.4
     A reaction: A famous strong expression of realism about the existence of sets. It is remarkable how the ingredients of mathematics spread themselves before the mind like a landscape, inviting journeys - but I think that just shows how minds cope with abstractions.
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
     Full Idea: Gödel's incompleteness results of 1931 show that all axiom systems precise enough to satisfy Hilbert's conception are necessarily incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Michael Hallett - Introduction to Zermelo's 1930 paper p.1215
     A reaction: [Hallett italicises 'necessarily'] Hilbert axioms have to be recursive - that is, everything in the system must track back to them.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Gödel proved the classical relative consistency of the axiom V = L [Gödel, by Putnam]
     Full Idea: Gödel proved the classical relative consistency of the axiom V = L (which implies the axiom of choice and the generalized continuum hypothesis). This established the full independence of the continuum hypothesis from the other axioms.
     From: report of Kurt Gödel (What is Cantor's Continuum Problem? [1964]) by Hilary Putnam - Mathematics without Foundations
     A reaction: Gödel initially wanted to make V = L an axiom, but the changed his mind. Maddy has lots to say on the subject.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
In simple type theory the axiom of Separation is better than Reducibility [Gödel, by Linsky,B]
     Full Idea: In the superior realist and simple theory of types, the place of the axiom of reducibility is not taken by the axiom of classes, Zermelo's Aussonderungsaxiom.
     From: report of Kurt Gödel (Russell's Mathematical Logic [1944], p.140-1) by Bernard Linsky - Russell's Metaphysical Logic 6.1 n3
     A reaction: This is Zermelo's Axiom of Separation, but that too is not an axiom of standard ZFC.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Technical people see logic as any formal system that can be studied, not a study of argument validity [Burgess]
     Full Idea: Among the more technically oriented a 'logic' no longer means a theory about which forms of argument are valid, but rather means any formalism, regardless of its applications, that resembles original logic enough to be studied by similar methods.
     From: John P. Burgess (Philosophical Logic [2009], Pref)
     A reaction: There doesn't seem to be any great intellectual obligation to be 'technical'. As far as pure logic is concerned, I am very drawn to the computer approach, since I take that to be the original dream of Aristotle and Leibniz - impersonal precision.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic neglects the non-mathematical, such as temporality or modality [Burgess]
     Full Idea: There are topics of great philosophical interest that classical logic neglects because they are not important to mathematics. …These include distinctions of past, present and future, or of necessary, actual and possible.
     From: John P. Burgess (Philosophical Logic [2009], 1.1)
The Cut Rule expresses the classical idea that entailment is transitive [Burgess]
     Full Idea: The Cut rule (from A|-B and B|-C, infer A|-C) directly expresses the classical doctrine that entailment is transitive.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
Classical logic neglects counterfactuals, temporality and modality, because maths doesn't use them [Burgess]
     Full Idea: Classical logic neglects counterfactual conditionals for the same reason it neglects temporal and modal distinctions, namely, that they play no serious role in mathematics.
     From: John P. Burgess (Philosophical Logic [2009], 4.1)
     A reaction: Science obviously needs counterfactuals, and metaphysics needs modality. Maybe so-called 'classical' logic will be renamed 'basic mathematical logic'. Philosophy will become a lot clearer when that happens.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Gödel proved that first-order logic is complete, and second-order logic incomplete [Gödel, by Dummett]
     Full Idea: Gödel proved the completeness of standard formalizations of first-order logic, including Frege's original one. However, an implication of his famous theorem on the incompleteness of arithmetic is that second-order logic is incomplete.
     From: report of Kurt Gödel (works [1930]) by Michael Dummett - The Philosophy of Mathematics 3.1
     A reaction: This must mean that it is impossible to characterise arithmetic fully in terms of first-order logic. In which case we can only characterize the features of abstract reality in general if we employ an incomplete system. We're doomed.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Mathematical Logic is a non-numerical branch of mathematics, and the supreme science [Gödel]
     Full Idea: 'Mathematical Logic' is a precise and complete formulation of formal logic, and is both a section of mathematics covering classes, relations, symbols etc, and also a science prior to all others, with ideas and principles underlying all sciences.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.447)
     A reaction: He cites Leibniz as the ancestor. In this database it is referred to as 'theory of logic', as 'mathematical' seems to be simply misleading. The principles of the subject are standardly applied to mathematical themes.
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Philosophical logic is a branch of logic, and is now centred in computer science [Burgess]
     Full Idea: Philosophical logic is a branch of logic, a technical subject. …Its centre of gravity today lies in theoretical computer science.
     From: John P. Burgess (Philosophical Logic [2009], Pref)
     A reaction: He firmly distinguishes it from 'philosophy of logic', but doesn't spell it out. I take it that philosophical logic concerns metaprinciples which compare logical systems, and suggest new lines of research. Philosophy of logic seems more like metaphysics.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Formalising arguments favours lots of connectives; proving things favours having very few [Burgess]
     Full Idea: When formalising arguments it is convenient to have as many connectives as possible available.; but when proving results about formulas it is convenient to have as few as possible.
     From: John P. Burgess (Philosophical Logic [2009], 1.4)
     A reaction: Illuminating. The fact that you can whittle classical logic down to two (or even fewer!) connectives warms the heart of technicians, but makes connection to real life much more difficult. Hence a bunch of extras get added.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / e. or
Asserting a disjunction from one disjunct seems odd, but can be sensible, and needed in maths [Burgess]
     Full Idea: Gricean implicature theory might suggest that a disjunction is never assertable when a disjunct is (though actually the disjunction might be 'pertinent') - but the procedure is indispensable in mathematical practice.
     From: John P. Burgess (Philosophical Logic [2009], 5.2)
     A reaction: He gives an example of a proof in maths which needs it, and an unusual conversational occasion where it makes sense.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
All occurrences of variables in atomic formulas are free [Burgess]
     Full Idea: All occurrences of variables in atomic formulas are free.
     From: John P. Burgess (Philosophical Logic [2009], 1.7)
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
The denotation of a definite description is flexible, rather than rigid [Burgess]
     Full Idea: By contrast to rigidly designating proper names, …the denotation of definite descriptions is (in general) not rigid but flexible.
     From: John P. Burgess (Philosophical Logic [2009], 2.9)
     A reaction: This modern way of putting it greatly clarifies why Russell was interested in the type of reference involved in definite descriptions. Obviously some descriptions (such as 'the only person who could ever have…') might be rigid.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Reference to a totality need not refer to a conjunction of all its elements [Gödel]
     Full Idea: One may, on good grounds, deny that reference to a totality necessarily implies reference to all single elements of it or, in other words, that 'all' means the same as an infinite logical conjunction.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.455)
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
'Induction' and 'recursion' on complexity prove by connecting a formula to its atomic components [Burgess]
     Full Idea: There are atomic formulas, and formulas built from the connectives, and that is all. We show that all formulas have some property, first for the atomics, then the others. This proof is 'induction on complexity'; we also use 'recursion on complexity'.
     From: John P. Burgess (Philosophical Logic [2009], 1.4)
     A reaction: That is: 'induction on complexity' builds a proof from atomics, via connectives; 'recursion on complexity' breaks down to the atomics, also via the connectives. You prove something by showing it is rooted in simple truths.
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
The sequent calculus makes it possible to have proof without transitivity of entailment [Burgess]
     Full Idea: It might be wondered how one could have any kind of proof procedure at all if transitivity of entailment is disallowed, but the sequent calculus can get around the difficulty.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
     A reaction: He gives examples where transitivity of entailment (so that you can build endless chains of deductions) might fail. This is the point of the 'cut free' version of sequent calculus, since the cut rule allows transitivity.
We can build one expanding sequence, instead of a chain of deductions [Burgess]
     Full Idea: Instead of demonstrations which are either axioms, or follow from axioms by rules, we can have one ever-growing sequence of formulas of the form 'Axioms |- ______', where the blank is filled by Axioms, then Lemmas, then Theorems, then Corollaries.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
Originally truth was viewed with total suspicion, and only demonstrability was accepted [Gödel]
     Full Idea: At that time (c.1930) a concept of objective mathematical truth as opposed to demonstrability was viewed with greatest suspicion and widely rejected as meaningless.
     From: Kurt Gödel (works [1930]), quoted by Peter Smith - Intro to Gödel's Theorems 28.2
     A reaction: [quoted from a letter] This is the time of Ramsey's redundancy account, and before Tarski's famous paper of 1933. It is also the high point of Formalism, associated with Hilbert.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Tautologies' are valid formulas of classical sentential logic - or substitution instances in other logics [Burgess]
     Full Idea: The valid formulas of classical sentential logic are called 'tautologically valid', or simply 'tautologies'; with other logics 'tautologies' are formulas that are substitution instances of valid formulas of classical sentential logic.
     From: John P. Burgess (Philosophical Logic [2009], 1.5)
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Validity (for truth) and demonstrability (for proof) have correlates in satisfiability and consistency [Burgess]
     Full Idea: Validity (truth by virtue of logical form alone) and demonstrability (provability by virtue of logical form alone) have correlative notions of logical possibility, 'satisfiability' and 'consistency', which come apart in some logics.
     From: John P. Burgess (Philosophical Logic [2009], 3.3)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
We aim to get the technical notion of truth in all models matching intuitive truth in all instances [Burgess]
     Full Idea: The aim in setting up a model theory is that the technical notion of truth in all models should agree with the intuitive notion of truth in all instances. A model is supposed to represent everything about an instance that matters for its truth.
     From: John P. Burgess (Philosophical Logic [2009], 3.2)
Models leave out meaning, and just focus on truth values [Burgess]
     Full Idea: Models generally deliberately leave out meaning, retaining only what is important for the determination of truth values.
     From: John P. Burgess (Philosophical Logic [2009], 2.2)
     A reaction: This is the key point to hang on to, if you are to avoid confusing mathematical models with models of things in the real world.
We only need to study mathematical models, since all other models are isomorphic to these [Burgess]
     Full Idea: In practice there is no need to consider any but mathematical models, models whose universes consist of mathematical objects, since every model is isomorphic to one of these.
     From: John P. Burgess (Philosophical Logic [2009], 1.8)
     A reaction: The crucial link is the technique of Gödel Numbering, which can translate any verbal formula into numerical form. He adds that, because of the Löwenheim-Skolem theorem only subsets of the natural numbers need be considered.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
     Full Idea: The inherent limitations of the axiomatic method were first brought to light by the incompleteness theorems.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Koellner - On the Question of Absolute Undecidability 1.1
5. Theory of Logic / K. Features of Logics / 2. Consistency
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
     Full Idea: Second Incompleteness Theorem: roughly, nice theories that include enough basic arithmetic can't prove their own consistency.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.5
     A reaction: On the face of it, this sounds less surprising than the First Theorem. Philosophers have often noticed that it seems unlikely that you could use reason to prove reason, as when Descartes just relies on 'clear and distinct ideas'.
5. Theory of Logic / K. Features of Logics / 3. Soundness
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
     Full Idea: Gödel showed PA cannot be proved consistent from with PA. But 'reflection principles' can be added, which are axioms partially expressing the soundness of PA, by asserting what is provable. A Global Reflection Principle asserts full soundness.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Halbach,V/Leigh,G.E. - Axiomatic Theories of Truth (2013 ver) 1.2
     A reaction: The authors point out that this needs a truth predicate within the language, so disquotational truth won't do, and there is a motivation for an axiomatic theory of truth.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Gödel's Theorems did not refute the claim that all good mathematical questions have answers [Gödel, by Koellner]
     Full Idea: Gödel was quick to point out that his original incompleteness theorems did not produce instances of absolute undecidability and hence did not undermine Hilbert's conviction that for every precise mathematical question there is a discoverable answer.
     From: report of Kurt Gödel (works [1930]) by Peter Koellner - On the Question of Absolute Undecidability Intro
     A reaction: The normal simplistic view among philosophes is that Gödel did indeed decisively refute the optimistic claims of Hilbert. Roughly, whether Hilbert is right depends on which axioms of set theory you adopt.
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
     Full Idea: Where Gödel's First Theorem sabotages logicist ambitions, the Second Theorem sabotages Hilbert's Programme.
     From: comment on Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 36
     A reaction: Neo-logicism (Crispin Wright etc.) has a strategy for evading the First Theorem.
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
     Full Idea: My undecidable arithmetical sentence ...is not at all absolutely undecidable; rather, one can always pass to 'higher' systems in which the sentence in question is decidable.
     From: Kurt Gödel (On Formally Undecidable Propositions [1931]), quoted by Peter Koellner - On the Question of Absolute Undecidability 1.1
     A reaction: [a 1931 MS] He says the reals are 'higher' than the naturals, and the axioms of set theory are higher still. The addition of a truth predicate is part of what makes the sentence become decidable.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A logical system needs a syntactical survey of all possible expressions [Gödel]
     Full Idea: In order to be sure that new expression can be translated into expressions not containing them, it is necessary to have a survey of all possible expressions, and this can be furnished only by syntactical considerations.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.448)
     A reaction: [compressed]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Set-theory paradoxes are no worse than sense deception in physics [Gödel]
     Full Idea: The set-theoretical paradoxes are hardly any more troublesome for mathematics than deceptions of the senses are for physics.
     From: Kurt Gödel (What is Cantor's Continuum Problem? [1964], p.271), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 03.4
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The Liar seems like a truth-value 'gap', but dialethists see it as a 'glut' [Burgess]
     Full Idea: It is a common view that the liar sentence ('This very sentence is not true') is an instance of a truth-value gap (neither true nor false), but some dialethists cite it as an example of a truth-value glut (both true and false).
     From: John P. Burgess (Philosophical Logic [2009], 5.7)
     A reaction: The defence of the glut view must be that it is true, then it is false, then it is true... Could it manage both at once?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
     Full Idea: Gödel's far-reaching work on the nature of logic and formal systems reveals that there can be no single consistent theory from which all mathematical truths can be derived.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.8
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The generalized Continuum Hypothesis asserts a discontinuity in cardinal numbers [Gödel]
     Full Idea: The generalized Continuum Hypothesis says that there exists no cardinal number between the power of any arbitrary set and the power of the set of its subsets.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.464)
The Continuum Hypothesis is not inconsistent with the axioms of set theory [Gödel, by Clegg]
     Full Idea: Gödel proved that the Continuum Hypothesis was not inconsistent with the axioms of set theory.
     From: report of Kurt Gödel (What is Cantor's Continuum Problem? [1964]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
If set theory is consistent, we cannot refute or prove the Continuum Hypothesis [Gödel, by Hart,WD]
     Full Idea: Gödel proved that (if set theory is consistent) we cannot refute the continuum hypothesis, and Cohen proved that (if set theory is consistent) we cannot prove it either.
     From: report of Kurt Gödel (What is Cantor's Continuum Problem? [1964]) by William D. Hart - The Evolution of Logic 10
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gödel eventually hoped for a generalised completeness theorem leaving nothing undecidable [Gödel, by Koellner]
     Full Idea: Eventually Gödel ...expressed the hope that there might be a generalised completeness theorem according to which there are no absolutely undecidable sentences.
     From: report of Kurt Gödel (works [1930]) by Peter Koellner - On the Question of Absolute Undecidability Intro
     A reaction: This comes as a bit of a shock to those who associate him with the inherent undecidability of reality.
The real reason for Incompleteness in arithmetic is inability to define truth in a language [Gödel]
     Full Idea: The concept of truth of sentences in a language cannot be defined in the language. This is the true reason for the existence of undecidable propositions in the formal systems containing arithmetic.
     From: Kurt Gödel (works [1930]), quoted by Peter Smith - Intro to Gödel's Theorems 21.6
     A reaction: [from a letter by Gödel] So they key to Incompleteness is Tarski's observations about truth. Highly significant, as I take it.
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
     Full Idea: Gödel's theorem states that either arithmetic is incomplete, or it is inconsistent.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.7
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
     Full Idea: First Incompleteness Theorem: any properly axiomatised and consistent theory of basic arithmetic must remain incomplete, whatever our efforts to complete it by throwing further axioms into the mix.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.2
     A reaction: This is because it is always possible to formulate a well-formed sentence which is not provable within the theory.
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
     Full Idea: The vast continent of arithmetical truth cannot be brought into systematic order by laying down a fixed set of axioms and rules of inference from which every true mathematical statement can be formally derived. For some this was a shocking revelation.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by E Nagel / JR Newman - Gödel's Proof VII.C
     A reaction: Good news for philosophy, I'd say. The truth cannot be worked out by mechanical procedures, so it needs the subtle and intuitive intelligence of your proper philosopher (Parmenides is the role model) to actually understand reality.
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
     Full Idea: Gödel's Second Incompleteness Theorem says that true unprovable sentences are clearly semantic consequences of the axioms in the sense that they are necessarily true if the axioms are true. So semantic consequence outruns provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Robert Hanna - Rationality and Logic 5.3
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
     Full Idea: First Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S is syntactically incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Gödel found a single sentence, effectively saying 'I am unprovable in S', which is neither provable nor refutable in S.
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
     Full Idea: Second Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S cannot prove its own consistency
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This seems much less surprising than the First Theorem (though it derives from it). It was always kind of obvious that you couldn't use reason to prove that reason works (see, for example, the Cartesian Circle).
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
     Full Idea: The original Gödel construction gives us a sentence that a theory shows is true if and only if it satisfies the condition of being unprovable-in-that-theory.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 20.5
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
     Full Idea: An approximation of Gödel's Theorem imagines a statement 'This system of mathematics can't prove this statement true'. If the system proves the statement, then it can't prove it. If the statement can't prove the statement, clearly it still can't prove it.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
     A reaction: Gödel's contribution to this simple idea seems to be a demonstration that formal arithmetic is capable of expressing such a statement.
Some arithmetical problems require assumptions which transcend arithmetic [Gödel]
     Full Idea: It has turned out that the solution of certain arithmetical problems requires the use of assumptions essentially transcending arithmetic.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.449)
     A reaction: A nice statement of the famous result, from the great man himself, in the plainest possible English.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is the standard background for modern mathematics [Burgess]
     Full Idea: In present-day mathematics, it is set theory that serves as the background theory in which other branches of mathematics are developed.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: [He cites Bourbaki as an authority for this] See Benacerraf for a famous difficulty here, when you actually try to derive an ontology from the mathematicians' working practices.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralists take the name 'R' of the reals to be a variable ranging over structures, not a structure [Burgess]
     Full Idea: On the structuralist interpretation, theorems of analysis concerning the real numbers R are about all complete ordered fields. So R, which appears to be the name of a specific structure, is taken to be a variable ranging over structures.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: Since I am beginning to think that nearly all linguistic expressions should be understood as variables, I find this very appealing, even if Burgess hates it. Terms slide and drift, and are vague, between variable and determinate reference.
There is no one relation for the real number 2, as relations differ in different models [Burgess]
     Full Idea: One might meet the 'Van Inwagen Problem' by saying that the intrinsic properties of the object playing the role of 2 will differ from one model to another, so that no statement about the intrinsic properties of 'the' real numbers will make sense.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §5)
     A reaction: There seems to be a potential confusion among opponents of structuralism between relations at the level of actual mathematical operations, and generalisations about relations, which are captured in the word 'patterns'. Call them 'meta-relations'?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If set theory is used to define 'structure', we can't define set theory structurally [Burgess]
     Full Idea: It is to set theory that one turns for the very definition of 'structure', ...and this creates a problem of circularity if we try to impose a structuralist interpretation on set theory.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: This seems like a nice difficulty, especially if, like Shapiro, you wade in and try to give a formal account of structures and patterns. Resnik is more circumspect and vague.
Abstract algebra concerns relations between models, not common features of all the models [Burgess]
     Full Idea: Abstract algebra, such as group theory, is not concerned with the features common to all models of the axioms, but rather with the relationships among different models of those axioms (especially homomorphic relation functions).
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: It doesn't seem to follow that structuralism can't be about the relations (or patterns) found when abstracting away and overviewing all the models. One can study family relations, or one can study kinship in general.
How can mathematical relations be either internal, or external, or intrinsic? [Burgess]
     Full Idea: The 'Van Inwagen Problem' for structuralism is of explaining how a mathematical relation (such as set membership, or the ratios of an ellipse) can fit into one of the three scholastics types of relations: are they internal, external, or intrinsic?
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §5)
     A reaction: The difficulty is that mathematical objects seem to need intrinsic properties to get any of these three versions off the ground (which was Russell's complaint against structures).
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematical objects are as essential as physical objects are for perception [Gödel]
     Full Idea: Classes and concepts may be conceived of as real objects, ..and are as necessary to obtain a satisfactory system of mathematics as physical bodies are necessary for a satisfactory theory of our sense perceptions, with neither case being about 'data'.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.456)
     A reaction: Note that while he thinks real objects are essential for mathematics, be may not be claiming the same thing for our knowledge of logic. If logic contains no objects, then how could mathematics be reduced to it, as in logicism?
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Basic mathematics is related to abstract elements of our empirical ideas [Gödel]
     Full Idea: Evidently the 'given' underlying mathematics is closely related to the abstract elements contained in our empirical ideas.
     From: Kurt Gödel (What is Cantor's Continuum Problem? [1964], Suppl)
     A reaction: Yes! The great modern mathematical platonist says something with which I can agree. He goes on to hint at a platonic view of the structure of the empirical world, but we'll let that pass.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Impredicative definitions are admitted into ordinary mathematics [Gödel]
     Full Idea: Impredicative definitions are admitted into ordinary mathematics.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.464)
     A reaction: The issue is at what point in building an account of the foundations of mathematics (if there be such, see Putnam) these impure definitions should be ruled out.
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
     Full Idea: Gödel defended impredicative definitions on grounds of ontological realism. From that perspective, an impredicative definition is a description of an existing entity with reference to other existing entities.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Stewart Shapiro - Thinking About Mathematics 5.3
     A reaction: This is why constructivists must be absolutely precise about definition, where realists only have to do their best. Compare building a car with painting a landscape.
10. Modality / A. Necessity / 4. De re / De dicto modality
De re modality seems to apply to objects a concept intended for sentences [Burgess]
     Full Idea: There is a problem over 'de re' modality (as contrasted with 'de dicto'), as in ∃x□x. What is meant by '"it is analytic that Px" is satisfied by a', given that analyticity is a notion that in the first instance applies to complete sentences?
     From: John P. Burgess (Philosophical Logic [2009], 3.9)
     A reaction: This is Burgess's summary of one of Quine's original objections. The issue may be a distinction between whether the sentence is analytic, and what makes it analytic. The necessity of bachelors being unmarried makes that sentence analytic.
10. Modality / A. Necessity / 6. Logical Necessity
General consensus is S5 for logical modality of validity, and S4 for proof [Burgess]
     Full Idea: To the extent that there is any conventional wisdom about the question, it is that S5 is correct for alethic logical modality, and S4 correct for apodictic logical modality.
     From: John P. Burgess (Philosophical Logic [2009], 3.8)
     A reaction: In classical logic these coincide, so presumably one should use the minimum system to do the job, which is S4 (?).
Logical necessity has two sides - validity and demonstrability - which coincide in classical logic [Burgess]
     Full Idea: Logical necessity is a genus with two species. For classical logic the truth-related notion of validity and the proof-related notion of demonstrability, coincide - but they are distinct concept. In some logics they come apart, in intension and extension.
     From: John P. Burgess (Philosophical Logic [2009], 3.3)
     A reaction: They coincide in classical logic because it is sound and complete. This strikes me as the correct approach to logical necessity, tying it to the actual nature of logic, rather than some handwavy notion of just 'true in all possible worlds'.
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Three conditionals theories: Materialism (material conditional), Idealism (true=assertable), Nihilism (no truth) [Burgess]
     Full Idea: Three main theories of the truth of indicative conditionals are Materialism (the conditions are the same as for the material conditional), Idealism (identifying assertability with truth-value), and Nihilism (no truth, just assertability).
     From: John P. Burgess (Philosophical Logic [2009], 4.3)
It is doubtful whether the negation of a conditional has any clear meaning [Burgess]
     Full Idea: It is contentious whether conditionals have negations, and whether 'it is not the case that if A,B' has any clear meaning.
     From: John P. Burgess (Philosophical Logic [2009], 4.9)
     A reaction: This seems to be connected to Lewis's proof that a probability conditional cannot be reduced to a single proposition. If a conditional only applies to A-worlds, it is not surprising that its meaning gets lost when it leaves that world.
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]
     Full Idea: Gödel in his completeness theorem for first-order logic showed that a certain set of syntactically specifiable rules was adequate to capture all first-order valid arguments. No semantics (e.g. reference, truth, validity) was necessary.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.2
     A reaction: This implies that a logic machine is possible, but we shouldn't raise our hopes for proper rationality. Validity can be shown for purely algebraic arguments, but rationality requires truth as well as validity, and that needs propositions and semantics.