Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, John P. Burgess and Paul Benacerraf

unexpand these ideas     |    start again     |     specify just one area for these philosophers


66 ideas

4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
With four tense operators, all complex tenses reduce to fourteen basic cases [Burgess]
     Full Idea: Fand P as 'will' and 'was', G as 'always going to be', H as 'always has been', all tenses reduce to 14 cases: the past series, each implying the next, FH,H,PH,HP,P,GP, and the future series PG,G,FG,GF,F,HF, plus GH=HG implying all, FP=PF which all imply.
     From: John P. Burgess (Philosophical Logic [2009], 2.8)
     A reaction: I have tried to translate the fourteen into English, but am not quite confident enough to publish them here. I leave it as an exercise for the reader.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The temporal Barcan formulas fix what exists, which seems absurd [Burgess]
     Full Idea: In temporal logic, if the converse Barcan formula holds then nothing goes out of existence, and the direct Barcan formula holds if nothing ever comes into existence. These results highlight the intuitive absurdity of the Barcan formulas.
     From: John P. Burgess (Philosophical Logic [2009], 2.9)
     A reaction: This is my reaction to the modal cases as well - the absurdity of thinking that no actually nonexistent thing might possibly have existed, or that the actual existents might not have existed. Williamson seems to be the biggest friend of the formulas.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Is classical logic a part of intuitionist logic, or vice versa? [Burgess]
     Full Idea: From one point of view intuitionistic logic is a part of classical logic, missing one axiom, from another classical logic is a part of intuitionistic logic, missing two connectives, intuitionistic v and →
     From: John P. Burgess (Philosophical Logic [2009], 6.4)
It is still unsettled whether standard intuitionist logic is complete [Burgess]
     Full Idea: The question of the completeness of the full intuitionistic logic for its intended interpretation is not yet fully resolved.
     From: John P. Burgess (Philosophical Logic [2009], 6.9)
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
Relevance logic's → is perhaps expressible by 'if A, then B, for that reason' [Burgess]
     Full Idea: The relevantist logician's → is perhaps expressible by 'if A, then B, for that reason'.
     From: John P. Burgess (Philosophical Logic [2009], 5.8)
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Technical people see logic as any formal system that can be studied, not a study of argument validity [Burgess]
     Full Idea: Among the more technically oriented a 'logic' no longer means a theory about which forms of argument are valid, but rather means any formalism, regardless of its applications, that resembles original logic enough to be studied by similar methods.
     From: John P. Burgess (Philosophical Logic [2009], Pref)
     A reaction: There doesn't seem to be any great intellectual obligation to be 'technical'. As far as pure logic is concerned, I am very drawn to the computer approach, since I take that to be the original dream of Aristotle and Leibniz - impersonal precision.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic neglects the non-mathematical, such as temporality or modality [Burgess]
     Full Idea: There are topics of great philosophical interest that classical logic neglects because they are not important to mathematics. …These include distinctions of past, present and future, or of necessary, actual and possible.
     From: John P. Burgess (Philosophical Logic [2009], 1.1)
The Cut Rule expresses the classical idea that entailment is transitive [Burgess]
     Full Idea: The Cut rule (from A|-B and B|-C, infer A|-C) directly expresses the classical doctrine that entailment is transitive.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
Classical logic neglects counterfactuals, temporality and modality, because maths doesn't use them [Burgess]
     Full Idea: Classical logic neglects counterfactual conditionals for the same reason it neglects temporal and modal distinctions, namely, that they play no serious role in mathematics.
     From: John P. Burgess (Philosophical Logic [2009], 4.1)
     A reaction: Science obviously needs counterfactuals, and metaphysics needs modality. Maybe so-called 'classical' logic will be renamed 'basic mathematical logic'. Philosophy will become a lot clearer when that happens.
5. Theory of Logic / A. Overview of Logic / 9. Philosophical Logic
Philosophical logic is a branch of logic, and is now centred in computer science [Burgess]
     Full Idea: Philosophical logic is a branch of logic, a technical subject. …Its centre of gravity today lies in theoretical computer science.
     From: John P. Burgess (Philosophical Logic [2009], Pref)
     A reaction: He firmly distinguishes it from 'philosophy of logic', but doesn't spell it out. I take it that philosophical logic concerns metaprinciples which compare logical systems, and suggest new lines of research. Philosophy of logic seems more like metaphysics.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Formalising arguments favours lots of connectives; proving things favours having very few [Burgess]
     Full Idea: When formalising arguments it is convenient to have as many connectives as possible available.; but when proving results about formulas it is convenient to have as few as possible.
     From: John P. Burgess (Philosophical Logic [2009], 1.4)
     A reaction: Illuminating. The fact that you can whittle classical logic down to two (or even fewer!) connectives warms the heart of technicians, but makes connection to real life much more difficult. Hence a bunch of extras get added.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / e. or
Asserting a disjunction from one disjunct seems odd, but can be sensible, and needed in maths [Burgess]
     Full Idea: Gricean implicature theory might suggest that a disjunction is never assertable when a disjunct is (though actually the disjunction might be 'pertinent') - but the procedure is indispensable in mathematical practice.
     From: John P. Burgess (Philosophical Logic [2009], 5.2)
     A reaction: He gives an example of a proof in maths which needs it, and an unusual conversational occasion where it makes sense.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
All occurrences of variables in atomic formulas are free [Burgess]
     Full Idea: All occurrences of variables in atomic formulas are free.
     From: John P. Burgess (Philosophical Logic [2009], 1.7)
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
The denotation of a definite description is flexible, rather than rigid [Burgess]
     Full Idea: By contrast to rigidly designating proper names, …the denotation of definite descriptions is (in general) not rigid but flexible.
     From: John P. Burgess (Philosophical Logic [2009], 2.9)
     A reaction: This modern way of putting it greatly clarifies why Russell was interested in the type of reference involved in definite descriptions. Obviously some descriptions (such as 'the only person who could ever have…') might be rigid.
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
'Induction' and 'recursion' on complexity prove by connecting a formula to its atomic components [Burgess]
     Full Idea: There are atomic formulas, and formulas built from the connectives, and that is all. We show that all formulas have some property, first for the atomics, then the others. This proof is 'induction on complexity'; we also use 'recursion on complexity'.
     From: John P. Burgess (Philosophical Logic [2009], 1.4)
     A reaction: That is: 'induction on complexity' builds a proof from atomics, via connectives; 'recursion on complexity' breaks down to the atomics, also via the connectives. You prove something by showing it is rooted in simple truths.
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
The sequent calculus makes it possible to have proof without transitivity of entailment [Burgess]
     Full Idea: It might be wondered how one could have any kind of proof procedure at all if transitivity of entailment is disallowed, but the sequent calculus can get around the difficulty.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
     A reaction: He gives examples where transitivity of entailment (so that you can build endless chains of deductions) might fail. This is the point of the 'cut free' version of sequent calculus, since the cut rule allows transitivity.
We can build one expanding sequence, instead of a chain of deductions [Burgess]
     Full Idea: Instead of demonstrations which are either axioms, or follow from axioms by rules, we can have one ever-growing sequence of formulas of the form 'Axioms |- ______', where the blank is filled by Axioms, then Lemmas, then Theorems, then Corollaries.
     From: John P. Burgess (Philosophical Logic [2009], 5.3)
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
'Tautologies' are valid formulas of classical sentential logic - or substitution instances in other logics [Burgess]
     Full Idea: The valid formulas of classical sentential logic are called 'tautologically valid', or simply 'tautologies'; with other logics 'tautologies' are formulas that are substitution instances of valid formulas of classical sentential logic.
     From: John P. Burgess (Philosophical Logic [2009], 1.5)
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
Validity (for truth) and demonstrability (for proof) have correlates in satisfiability and consistency [Burgess]
     Full Idea: Validity (truth by virtue of logical form alone) and demonstrability (provability by virtue of logical form alone) have correlative notions of logical possibility, 'satisfiability' and 'consistency', which come apart in some logics.
     From: John P. Burgess (Philosophical Logic [2009], 3.3)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Models leave out meaning, and just focus on truth values [Burgess]
     Full Idea: Models generally deliberately leave out meaning, retaining only what is important for the determination of truth values.
     From: John P. Burgess (Philosophical Logic [2009], 2.2)
     A reaction: This is the key point to hang on to, if you are to avoid confusing mathematical models with models of things in the real world.
We only need to study mathematical models, since all other models are isomorphic to these [Burgess]
     Full Idea: In practice there is no need to consider any but mathematical models, models whose universes consist of mathematical objects, since every model is isomorphic to one of these.
     From: John P. Burgess (Philosophical Logic [2009], 1.8)
     A reaction: The crucial link is the technique of Gödel Numbering, which can translate any verbal formula into numerical form. He adds that, because of the Löwenheim-Skolem theorem only subsets of the natural numbers need be considered.
We aim to get the technical notion of truth in all models matching intuitive truth in all instances [Burgess]
     Full Idea: The aim in setting up a model theory is that the technical notion of truth in all models should agree with the intuitive notion of truth in all instances. A model is supposed to represent everything about an instance that matters for its truth.
     From: John P. Burgess (Philosophical Logic [2009], 3.2)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
The Liar seems like a truth-value 'gap', but dialethists see it as a 'glut' [Burgess]
     Full Idea: It is a common view that the liar sentence ('This very sentence is not true') is an instance of a truth-value gap (neither true nor false), but some dialethists cite it as an example of a truth-value glut (both true and false).
     From: John P. Burgess (Philosophical Logic [2009], 5.7)
     A reaction: The defence of the glut view must be that it is true, then it is false, then it is true... Could it manage both at once?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical truth is always compromising between ordinary language and sensible epistemology [Benacerraf]
     Full Idea: Most accounts of the concept of mathematical truth can be identified with serving one or another of either semantic theory (matching it to ordinary language), or with epistemology (meshing with a reasonable view) - always at the expense of the other.
     From: Paul Benacerraf (Mathematical Truth [1973], Intro)
     A reaction: The gist is that language pulls you towards platonism, and epistemology pulls you towards empiricism. He argues that the semantics must give ground. He's right.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Obtaining numbers by abstraction is impossible - there are too many; only a rule could give them, in order [Benacerraf]
     Full Idea: Not all numbers could possibly have been learned à la Frege-Russell, because we could not have performed that many distinct acts of abstraction. Somewhere along the line a rule had to come in to enable us to obtain more numbers, in the natural order.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.165)
     A reaction: Follows on from Idea 13411. I'm not sure how Russell would deal with this, though I am sure his account cannot be swept aside this easily. Nevertheless this seems powerful and convincing, approaching the problem through the epistemology.
We must explain how we know so many numbers, and recognise ones we haven't met before [Benacerraf]
     Full Idea: Both ordinalists and cardinalists, to account for our number words, have to account for the fact that we know so many of them, and that we can 'recognize' numbers which we've neither seen nor heard.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.166)
     A reaction: This seems an important contraint on any attempt to explain numbers. Benacerraf is an incipient structuralist, and here presses the importance of rules in our grasp of number. Faced with 42,578,645, we perform an act of deconstruction to grasp it.
There are no such things as numbers [Benacerraf]
     Full Idea: There are no such things as numbers.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: Mill said precisely the same (Idea 9794). I think I agree. There has been a classic error of reification. An abstract pattern is not an object. If I coin a word for all the three-digit numbers in our system, I haven't created a new 'object'.
Numbers can't be sets if there is no agreement on which sets they are [Benacerraf]
     Full Idea: The fact that Zermelo and Von Neumann disagree on which particular sets the numbers are is fatal to the view that each number is some particular set.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: I agree. A brilliantly simple argument. There is the possibility that one of the two accounts is correct (I would vote for Zermelo), but it is not actually possible to prove it.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
If numbers are basically the cardinals (Frege-Russell view) you could know some numbers in isolation [Benacerraf]
     Full Idea: If we accept the Frege-Russell analysis of number (the natural numbers are the cardinals) as basic and correct, one thing which seems to follow is that one could know, say, three, seventeen, and eight, but no other numbers.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.164)
     A reaction: It seems possible that someone might only know those numbers, as the patterns of members of three neighbouring families (the only place where they apply number). That said, this is good support for the priority of ordinals. See Idea 13412.
Benacerraf says numbers are defined by their natural ordering [Benacerraf, by Fine,K]
     Full Idea: Benacerraf thinks of numbers as being defined by their natural ordering.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Kit Fine - Cantorian Abstraction: Recon. and Defence §5
     A reaction: My intuition is that cardinality is logically prior to ordinality, since that connects better with the experienced physical world of objects. Just as the fact that people have different heights must precede them being arranged in height order.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
To understand finite cardinals, it is necessary and sufficient to understand progressions [Benacerraf, by Wright,C]
     Full Idea: Benacerraf claims that the concept of a progression is in some way the fundamental arithmetical notion, essential to understanding the idea of a finite cardinal, with a grasp of progressions sufficing for grasping finite cardinals.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Crispin Wright - Frege's Concept of Numbers as Objects 3.xv
     A reaction: He cites Dedekind (and hence the Peano Axioms) as the source of this. The interest is that progression seems to be fundamental to ordianls, but this claims it is also fundamental to cardinals. Note that in the first instance they are finite.
A set has k members if it one-one corresponds with the numbers less than or equal to k [Benacerraf]
     Full Idea: Any set has k members if and only if it can be put into one-to-one correspondence with the set of numbers less than or equal to k.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: This is 'Ernie's' view of things in the paper. This defines the finite cardinal numbers in terms of the finite ordinal numbers. He has already said that the set of numbers is well-ordered.
To explain numbers you must also explain cardinality, the counting of things [Benacerraf]
     Full Idea: I would disagree with Quine. The explanation of cardinality - i.e. of the use of numbers for 'transitive counting', as I have called it - is part and parcel of the explication of number.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I n2)
     A reaction: Quine says numbers are just a progression, with transitive counting as a bonus. Interesting that Benacerraf identifies cardinality with transitive counting. I would have thought it was the possession of numerical quantity, not ascertaining it.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
We can count intransitively (reciting numbers) without understanding transitive counting of items [Benacerraf]
     Full Idea: Learning number words in the right order is counting 'intransitively'; using them as measures of sets is counting 'transitively'. ..It seems possible for someone to learn the former without learning the latter.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: Scruton's nice question (Idea 3907) is whether you could be said to understand numbers if you could only count intransitively. I would have thought such a state contained no understanding at all of numbers. Benacerraf agrees.
Someone can recite numbers but not know how to count things; but not vice versa [Benacerraf]
     Full Idea: It seems that it is possible for someone to learn to count intransitively without learning to count transitively. But not vice versa.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: Benacerraf favours the priority of the ordinals. It is doubtful whether you have grasped cardinality properly if you don't know how to count things. Could I understand 'he has 27 sheep', without understanding the system of natural numbers?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The application of a system of numbers is counting and measurement [Benacerraf]
     Full Idea: The application of a system of numbers is counting and measurement.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: A simple point, but it needs spelling out. Counting seems prior, in experience if not in logic. Measuring is a luxury you find you can indulge in (by imagining your quantity) split into parts, once you have mastered counting.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
For Zermelo 3 belongs to 17, but for Von Neumann it does not [Benacerraf]
     Full Idea: Ernie's number progression is [φ],[φ,[φ]],[φ,[φ],[φ,[φ,[φ]]],..., whereas Johnny's is [φ],[[φ]],[[[φ]]],... For Ernie 3 belongs to 17, not for Johnny. For Ernie 17 has 17 members; for Johnny it has one.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: Benacerraf's point is that there is no proof-theoretic way to choose between them, though I am willing to offer my intuition that Ernie (Zermelo) gives the right account. Seventeen pebbles 'contains' three pebbles; you must pass 3 to count to 17.
The successor of x is either x and all its members, or just the unit set of x [Benacerraf]
     Full Idea: For Ernie, the successor of a number x was the set consisting of x and all the members of x, while for Johnny the successor of x was simply [x], the unit set of x - the set whose only member is x.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: See also Idea 9900. Benacerraf's famous point is that it doesn't seem to make any difference to arithmetic which version of set theory you choose as its basis. I take this to conclusively refute the idea that numbers ARE sets.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is the standard background for modern mathematics [Burgess]
     Full Idea: In present-day mathematics, it is set theory that serves as the background theory in which other branches of mathematics are developed.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: [He cites Bourbaki as an authority for this] See Benacerraf for a famous difficulty here, when you actually try to derive an ontology from the mathematicians' working practices.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Disputes about mathematical objects seem irrelevant, and mathematicians cannot resolve them [Benacerraf, by Friend]
     Full Idea: If two children were brought up knowing two different set theories, they could entirely agree on how to do arithmetic, up to the point where they discuss ontology. There is no mathematical way to tell which is the true representation of numbers.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Benacerraf ends by proposing a structuralist approach. If mathematics is consistent with conflicting set theories, then those theories are not shedding light on mathematics.
No particular pair of sets can tell us what 'two' is, just by one-to-one correlation [Benacerraf, by Lowe]
     Full Idea: Hume's Principle can't tell us what a cardinal number is (this is one lesson of Benacerraf's well-known problem). An infinity of pairs of sets could actually be the number two (not just the simplest sets).
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by E.J. Lowe - The Possibility of Metaphysics 10.3
     A reaction: The drift here is for numbers to end up as being basic, axiomatic, indefinable, universal entities. Since I favour patterns as the basis of numbers, I think the basis might be in a pre-verbal experience, which even a bird might have, viewing its eggs.
If ordinal numbers are 'reducible to' some set-theory, then which is which? [Benacerraf]
     Full Idea: If a particular set-theory is in a strong sense 'reducible to' the theory of ordinal numbers... then we can still ask, but which is really which?
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIB)
     A reaction: A nice question about all reductions. If we reduce mind to brain, does that mean that brain is really just mind. To have a direction (up/down?), reduction must lead to explanation in a single direction only. Do numbers explain sets?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
An adequate account of a number must relate it to its series [Benacerraf]
     Full Idea: No account of an individual number is adequate unless it relates that number to the series of which it is a member.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.169)
     A reaction: Thus it is not totally implausible to say that 2 is several different numbers or concepts, depending on whether you see it as a natural number, an integer, a rational, or a real. This idea is the beginning of modern structuralism.
If any recursive sequence will explain ordinals, then it seems to be the structure which matters [Benacerraf]
     Full Idea: If any recursive sequence whatever would do to explain ordinal numbers suggests that what is important is not the individuality of each element, but the structure which they jointly exhibit.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This sentence launched the whole modern theory of Structuralism in mathematics. It is hard to see what properties a number-as-object could have which would entail its place in an ordinal sequence.
The job is done by the whole system of numbers, so numbers are not objects [Benacerraf]
     Full Idea: 'Objects' do not do the job of numbers singly; the whole system performs the job or nothing does. I therefore argue that numbers could not be objects at all.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This thought is explored by structuralism - though it is a moot point where mere 'nodes' in a system (perhaps filled with old bits of furniture) will do the job either. No one ever explains the 'power' of numbers (felt when you do a sudoku). Causal?
The number 3 defines the role of being third in a progression [Benacerraf]
     Full Idea: Any object can play the role of 3; that is, any object can be the third element in some progression. What is peculiar to 3 is that it defines that role, not by being a paradigm, but by representing the relation of any third member of a progression.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: An interesting early attempt to spell out the structuralist idea. I'm thinking that the role is spelled out by the intersection of patterns which involve threes.
Number words no more have referents than do the parts of a ruler [Benacerraf]
     Full Idea: Questions of the identification of the referents of number words should be dismissed as misguided in just the way that a question about the referents of the parts of a ruler would be seen as misguided.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: What a very nice simple point. It would be very strange to insist that every single part of the continuum of a ruler should be regarded as an 'object'.
Mathematical objects only have properties relating them to other 'elements' of the same structure [Benacerraf]
     Full Idea: Mathematical objects have no properties other than those relating them to other 'elements' of the same structure.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], p.285), quoted by Fraser MacBride - Structuralism Reconsidered §3 n13
     A reaction: Suppose we only had one number - 13 - and we all cried with joy when we recognised it in a group of objects. Would that be a number, or just a pattern, or something hovering between the two?
How can numbers be objects if order is their only property? [Benacerraf, by Putnam]
     Full Idea: Benacerraf raises the question how numbers can be 'objects' if they have no properties except order in a particular ω-sequence.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965], p.301) by Hilary Putnam - Mathematics without Foundations
     A reaction: Frege certainly didn't think that order was their only property (see his 'borehole' metaphor in Grundlagen). It might be better to say that they are objects which only have relational properties.
Structuralists take the name 'R' of the reals to be a variable ranging over structures, not a structure [Burgess]
     Full Idea: On the structuralist interpretation, theorems of analysis concerning the real numbers R are about all complete ordered fields. So R, which appears to be the name of a specific structure, is taken to be a variable ranging over structures.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: Since I am beginning to think that nearly all linguistic expressions should be understood as variables, I find this very appealing, even if Burgess hates it. Terms slide and drift, and are vague, between variable and determinate reference.
There is no one relation for the real number 2, as relations differ in different models [Burgess]
     Full Idea: One might meet the 'Van Inwagen Problem' by saying that the intrinsic properties of the object playing the role of 2 will differ from one model to another, so that no statement about the intrinsic properties of 'the' real numbers will make sense.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §5)
     A reaction: There seems to be a potential confusion among opponents of structuralism between relations at the level of actual mathematical operations, and generalisations about relations, which are captured in the word 'patterns'. Call them 'meta-relations'?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If set theory is used to define 'structure', we can't define set theory structurally [Burgess]
     Full Idea: It is to set theory that one turns for the very definition of 'structure', ...and this creates a problem of circularity if we try to impose a structuralist interpretation on set theory.
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: This seems like a nice difficulty, especially if, like Shapiro, you wade in and try to give a formal account of structures and patterns. Resnik is more circumspect and vague.
Abstract algebra concerns relations between models, not common features of all the models [Burgess]
     Full Idea: Abstract algebra, such as group theory, is not concerned with the features common to all models of the axioms, but rather with the relationships among different models of those axioms (especially homomorphic relation functions).
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §1)
     A reaction: It doesn't seem to follow that structuralism can't be about the relations (or patterns) found when abstracting away and overviewing all the models. One can study family relations, or one can study kinship in general.
How can mathematical relations be either internal, or external, or intrinsic? [Burgess]
     Full Idea: The 'Van Inwagen Problem' for structuralism is of explaining how a mathematical relation (such as set membership, or the ratios of an ellipse) can fit into one of the three scholastics types of relations: are they internal, external, or intrinsic?
     From: John P. Burgess (Review of Chihara 'Struct. Accnt of Maths' [2005], §5)
     A reaction: The difficulty is that mathematical objects seem to need intrinsic properties to get any of these three versions off the ground (which was Russell's complaint against structures).
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Number-as-objects works wholesale, but fails utterly object by object [Benacerraf]
     Full Idea: The identification of numbers with objects works wholesale but fails utterly object by object.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: This seems to be a glaring problem for platonists. You can stare at 1728 till you are blue in the face, but it only begins to have any properties at all once you examine its place in the system. This is unusual behaviour for an object.
Realists have semantics without epistemology, anti-realists epistemology but bad semantics [Benacerraf, by Colyvan]
     Full Idea: Benacerraf argues that realists about mathematical objects have a nice normal semantic but no epistemology, and anti-realists have a good epistemology but an unorthodox semantics.
     From: report of Paul Benacerraf (Mathematical Truth [1973]) by Mark Colyvan - Introduction to the Philosophy of Mathematics 1.2
The platonist view of mathematics doesn't fit our epistemology very well [Benacerraf]
     Full Idea: The principle defect of the standard (platonist) account of mathematical truth is that it appears to violate the requirement that our account be susceptible to integration into our over-all account of knowledge.
     From: Paul Benacerraf (Mathematical Truth [1973], III)
     A reaction: Unfortunately he goes on to defend a causal theory of justification (fashionable at that time, but implausible now). Nevertheless, his general point is well made. Your theory of what mathematics is had better make it knowable.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are not predicates, as they function very differently from adjectives [Benacerraf]
     Full Idea: The unpredicative nature of number words can be seen by noting how different they are from, say, ordinary adjectives, which do function as predicates.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: He points out that 'x is seventeen' is a rare construction in English, unlike 'x is happy/green/interesting', and that numbers outrank all other adjectives (having to appear first in any string of them).
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
The set-theory paradoxes mean that 17 can't be the class of all classes with 17 members [Benacerraf]
     Full Idea: In no consistent theory is there a class of all classes with seventeen members. The existence of the paradoxes is a good reason to deny to 'seventeen' this univocal role of designating the class of all classes with seventeen members.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: This was Frege's disaster, and seems to block any attempt to achieve logicism by translating numbers into sets. It now seems unclear whether set theory is logic, or mathematics, or sui generis.
9. Objects / F. Identity among Objects / 6. Identity between Objects
Identity statements make sense only if there are possible individuating conditions [Benacerraf]
     Full Idea: Identity statements make sense only in contexts where there exist possible individuating conditions.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], III)
     A reaction: He is objecting to bizarre identifications involving numbers. An identity statement may be bizarre even if we can clearly individuate the two candidates. Winston Churchill is a Mars Bar. Identifying George Orwell with Eric Blair doesn't need a 'respect'.
10. Modality / A. Necessity / 4. De re / De dicto modality
De re modality seems to apply to objects a concept intended for sentences [Burgess]
     Full Idea: There is a problem over 'de re' modality (as contrasted with 'de dicto'), as in ∃x□x. What is meant by '"it is analytic that Px" is satisfied by a', given that analyticity is a notion that in the first instance applies to complete sentences?
     From: John P. Burgess (Philosophical Logic [2009], 3.9)
     A reaction: This is Burgess's summary of one of Quine's original objections. The issue may be a distinction between whether the sentence is analytic, and what makes it analytic. The necessity of bachelors being unmarried makes that sentence analytic.
10. Modality / A. Necessity / 6. Logical Necessity
General consensus is S5 for logical modality of validity, and S4 for proof [Burgess]
     Full Idea: To the extent that there is any conventional wisdom about the question, it is that S5 is correct for alethic logical modality, and S4 correct for apodictic logical modality.
     From: John P. Burgess (Philosophical Logic [2009], 3.8)
     A reaction: In classical logic these coincide, so presumably one should use the minimum system to do the job, which is S4 (?).
Logical necessity has two sides - validity and demonstrability - which coincide in classical logic [Burgess]
     Full Idea: Logical necessity is a genus with two species. For classical logic the truth-related notion of validity and the proof-related notion of demonstrability, coincide - but they are distinct concept. In some logics they come apart, in intension and extension.
     From: John P. Burgess (Philosophical Logic [2009], 3.3)
     A reaction: They coincide in classical logic because it is sound and complete. This strikes me as the correct approach to logical necessity, tying it to the actual nature of logic, rather than some handwavy notion of just 'true in all possible worlds'.
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
Three conditionals theories: Materialism (material conditional), Idealism (true=assertable), Nihilism (no truth) [Burgess]
     Full Idea: Three main theories of the truth of indicative conditionals are Materialism (the conditions are the same as for the material conditional), Idealism (identifying assertability with truth-value), and Nihilism (no truth, just assertability).
     From: John P. Burgess (Philosophical Logic [2009], 4.3)
It is doubtful whether the negation of a conditional has any clear meaning [Burgess]
     Full Idea: It is contentious whether conditionals have negations, and whether 'it is not the case that if A,B' has any clear meaning.
     From: John P. Burgess (Philosophical Logic [2009], 4.9)
     A reaction: This seems to be connected to Lewis's proof that a probability conditional cannot be reduced to a single proposition. If a conditional only applies to A-worlds, it is not surprising that its meaning gets lost when it leaves that world.
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?