Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, Keith Hossack and Lawrence M. Krauss

unexpand these ideas     |    start again     |     specify just one area for these philosophers


39 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice is a non-logical principle of set-theory [Hossack]
     Full Idea: The Axiom of Choice seems better treated as a non-logical principle of set-theory.
     From: Keith Hossack (Plurals and Complexes [2000], 4 n8)
     A reaction: This reinforces the idea that set theory is not part of logic (and so pure logicism had better not depend on set theory).
The Axiom of Choice guarantees a one-one correspondence from sets to ordinals [Hossack]
     Full Idea: We cannot explicitly define one-one correspondence from the sets to the ordinals (because there is no explicit well-ordering of R). Nevertheless, the Axiom of Choice guarantees that a one-one correspondence does exist, even if we cannot define it.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Predicativism says only predicated sets exist [Hossack]
     Full Idea: Predicativists doubt the existence of sets with no predicative definition.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 02.3)
     A reaction: This would imply that sets which encounter paradoxes when they try to be predicative do not therefore exist. Surely you can have a set of random objects which don't fall under a single predicate?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception has to appropriate Replacement, to justify the ordinals [Hossack]
     Full Idea: The iterative conception justifies Power Set, but cannot justify a satisfactory theory of von Neumann ordinals, so ZFC appropriates Replacement from NBG set theory.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: The modern approach to axioms, where we want to prove something so we just add an axiom that does the job.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size justifies Replacement, but then has to appropriate Power Set [Hossack]
     Full Idea: The limitation of size conception of sets justifies the axiom of Replacement, but cannot justify Power Set, so NBG set theory appropriates the Power Set axiom from ZFC.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: Which suggests that the Power Set axiom is not as indispensable as it at first appears to be.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe we reduce sets to ordinals, rather than the other way round [Hossack]
     Full Idea: We might reduce sets to ordinal numbers, thereby reversing the standard set-theoretical reduction of ordinals to sets.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
     A reaction: He has demonstrated that there are as many ordinals as there are sets.
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
Extensional mereology needs two definitions and two axioms [Hossack]
     Full Idea: Extensional mereology defs: 'distinct' things have no parts in common; a 'fusion' has some things all of which are parts, with no further parts. Axioms: (transitivity) a part of a part is part of the whole; (sums) any things have a unique fusion.
     From: Keith Hossack (Plurals and Complexes [2000], 5)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / d. and
The connective 'and' can have an order-sensitive meaning, as 'and then' [Hossack]
     Full Idea: The sentence connective 'and' also has an order-sensitive meaning, when it means something like 'and then'.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.4)
     A reaction: This is support the idea that orders are a feature of reality, just as much as possible concatenation. Relational predicates, he says, refer to series rather than to individuals. Nice point.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
'Before' and 'after' are not two relations, but one relation with two orders [Hossack]
     Full Idea: The reason the two predicates 'before' and 'after' are needed is not to express different relations, but to indicate its order. Since there can be difference of order without difference of relation, the nature of relations is not the source of order.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.3)
     A reaction: This point is to refute Russell's 1903 claim that order arises from the nature of relations. Hossack claims that it is ordered series which are basic. I'm inclined to agree with him.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Plural definite descriptions pick out the largest class of things that fit the description [Hossack]
     Full Idea: If we extend the power of language with plural definite descriptions, these would pick out the largest class of things that fit the description.
     From: Keith Hossack (Plurals and Complexes [2000], 3)
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plural reference will refer to complex facts without postulating complex things [Hossack]
     Full Idea: It may be that plural reference gives atomism the resources to state complex facts without needing to refer to complex things.
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: This seems the most interesting metaphysical implication of the possibility of plural quantification.
Plural reference is just an abbreviation when properties are distributive, but not otherwise [Hossack]
     Full Idea: If all properties are distributive, plural reference is just a handy abbreviation to avoid repetition (as in 'A and B are hungry', to avoid 'A is hungry and B is hungry'), but not all properties are distributive (as in 'some people surround a table').
     From: Keith Hossack (Plurals and Complexes [2000], 2)
     A reaction: The characteristic examples to support plural quantification involve collective activity and relations, which might be weeded out of our basic ontology, thus leaving singular quantification as sufficient.
A plural comprehension principle says there are some things one of which meets some condition [Hossack]
     Full Idea: Singular comprehension principles have a bad reputation, but the plural comprehension principle says that given a condition on individuals, there are some things such that something is one of them iff it meets the condition.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
Plural language can discuss without inconsistency things that are not members of themselves [Hossack]
     Full Idea: In a plural language we can discuss without fear of inconsistency the things that are not members of themselves.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
     A reaction: [see Hossack for details]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The theory of the transfinite needs the ordinal numbers [Hossack]
     Full Idea: The theory of the transfinite needs the ordinal numbers.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
I take the real numbers to be just lengths [Hossack]
     Full Idea: I take the real numbers to be just lengths.
     From: Keith Hossack (Plurals and Complexes [2000], 9)
     A reaction: I love it. Real numbers are beginning to get on my nerves. They turn up to the party with no invitation and improperly dressed, and then refuse to give their names when challenged.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Transfinite ordinals are needed in proof theory, and for recursive functions and computability [Hossack]
     Full Idea: The transfinite ordinal numbers are important in the theory of proofs, and essential in the theory of recursive functions and computability. Mathematics would be incomplete without them.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.1)
     A reaction: Hossack offers this as proof that the numbers are not human conceptual creations, but must exist beyond the range of our intellects. Hm.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
A plural language gives a single comprehensive induction axiom for arithmetic [Hossack]
     Full Idea: A language with plurals is better for arithmetic. Instead of a first-order fragment expressible by an induction schema, we have the complete truth with a plural induction axiom, beginning 'If there are some numbers...'.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
In arithmetic singularists need sets as the instantiator of numeric properties [Hossack]
     Full Idea: In arithmetic singularists need sets as the instantiator of numeric properties.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
Set theory is the science of infinity [Hossack]
     Full Idea: Set theory is the science of infinity.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Numbers are properties, not sets (because numbers are magnitudes) [Hossack]
     Full Idea: I propose that numbers are properties, not sets. Magnitudes are a kind of property, and numbers are magnitudes. …Natural numbers are properties of pluralities, positive reals of continua, and ordinals of series.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro)
     A reaction: Interesting! Since time can have a magnitude (three weeks) just as liquids can (three litres), it is not clear that there is a single natural property we can label 'magnitude'. Anything we can manage to measure has a magnitude.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We can only mentally construct potential infinities, but maths needs actual infinities [Hossack]
     Full Idea: Numbers cannot be mental objects constructed by our own minds: there exists at most a potential infinity of mental constructions, whereas the axioms of mathematics require an actual infinity of numbers.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro 2)
     A reaction: Doubt this, but don't know enough to refute it. Actual infinities were a fairly late addition to maths, I think. I would think treating fictional complete infinities as real would be sufficient for the job. Like journeys which include imagined roads.
7. Existence / C. Structure of Existence / 2. Reduction
An understanding of the most basic physics should explain all of the subject's mysteries [Krauss]
     Full Idea: Once we understood the fundamental laws that govern forces of nature at its smallest scales, all of these current mysteries would be revealed as natural consequences of these laws.
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 08)
     A reaction: This expresses the reductionist view within physics itself. Krauss says the discovery that empty space itself contains energy has led to a revision of this view (because that is not part of the forces and particles studied in basic physics).
7. Existence / C. Structure of Existence / 6. Fundamentals / c. Monads
In 1676 it was discovered that water is teeming with life [Krauss]
     Full Idea: Van Leeuwenhoek first stared at a drop of seemingly empty water with a microscope in 1676 and discovered in was teeming with life.
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 04)
     A reaction: I am convinced that this had a huge influence on Leibniz's concept of monads. He immediately became convinced that it was some sort of life all the way down. He would be have been disappointed by the subsequent chemical reduction of life.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We are committed to a 'group' of children, if they are sitting in a circle [Hossack]
     Full Idea: By Quine's test of ontological commitment, if some children are sitting in a circle, no individual child can sit in a circle, so a singular paraphrase will have us committed to a 'group' of children.
     From: Keith Hossack (Plurals and Complexes [2000], 2)
     A reaction: Nice of why Quine is committed to the existence of sets. Hossack offers plural quantification as a way of avoiding commitment to sets. But is 'sitting in a circle' a real property (in the Shoemaker sense)? I can sit in a circle without realising it.
9. Objects / C. Structure of Objects / 5. Composition of an Object
Complex particulars are either masses, or composites, or sets [Hossack]
     Full Idea: Complex particulars are of at least three types: masses (which sum, of which we do not ask 'how many?' but 'how much?'); composite individuals (how many?, and summing usually fails); and sets (only divisible one way, unlike composites).
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: A composite pile of grains of sand gradually becomes a mass, and drops of water become 'water everywhere'. A set of people divides into individual humans, but redescribe the elements as the union of males and females?
The relation of composition is indispensable to the part-whole relation for individuals [Hossack]
     Full Idea: The relation of composition seems to be indispensable in a correct account of the part-whole relation for individuals.
     From: Keith Hossack (Plurals and Complexes [2000], 7)
     A reaction: This is the culmination of a critical discussion of mereology and ontological atomism. At first blush it doesn't look as if 'composition' has much chance of being a precise notion, and it will be plagued with vagueness.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Leibniz's Law argues against atomism - water is wet, unlike water molecules [Hossack]
     Full Idea: We can employ Leibniz's Law against mereological atomism. Water is wet, but no water molecule is wet. The set of infinite numbers is infinite, but no finite number is infinite. ..But with plural reference the atomist can resist this argument.
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: The idea of plural reference is to state plural facts without referring to complex things, which is interesting. The general idea is that we have atomism, and then all the relations, unities, identities etc. are in the facts, not in the things. I like it.
The fusion of five rectangles can decompose into more than five parts that are rectangles [Hossack]
     Full Idea: The fusion of five rectangles may have a decomposition into more than five parts that are rectangles.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?
18. Thought / A. Modes of Thought / 1. Thought
A thought can refer to many things, but only predicate a universal and affirm a state of affairs [Hossack]
     Full Idea: A thought can refer to a particular or a universal or a state of affairs, but it can predicate only a universal and it can affirm only a state of affairs.
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: Hossack is summarising Armstrong's view, which he is accepting. To me, 'thought' must allow for animals, unlike language. I think Hossack's picture is much too clear-cut. Do animals grasp universals? Doubtful. Can they predicate? Yes.
27. Natural Reality / B. Modern Physics / 1. Relativity / a. Special relativity
Space itself can expand (and separate its contents) at faster than light speeds [Krauss]
     Full Idea: Special Relativity says nothing can travel 'through space' faster than the speed of light. But space itself can do whatever the heck it wants, at least in general relativity. And it can carry distant objects apart from one another at superluminal speeds
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 06)
     A reaction: Another of my misunderstandings corrected. I assumed that the event horizon (limit of observability) was defined by the stuff retreating at (max) light speed. But beyond that it retreats even faster! What about the photons in space?
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
General Relativity: the density of energy and matter determines curvature and gravity [Krauss]
     Full Idea: The left-hand side of the general relativity equations descrbe the curvature of the universe, and the strength of gravitational forces acting on matter and radiation. The right-hand sides reflect the total density of all kinds of energy and matter.
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 04)
     A reaction: I had assumed that the equations just described the geometry. In fact the matter determines the nature of the universe in which it exists. Presumably only things with mass get a vote.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Uncertainty says that energy can be very high over very short time periods [Krauss]
     Full Idea: The Heisenberg Uncertainty Principle says that the uncertainty in the measured energy of a system is inversely proportional to the length of time over which you observe it. (This allow near infinite energy over very short times).
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 04)
     A reaction: Apparently this brief energy is 'borrowed', and must be quickly repaid.
27. Natural Reality / B. Modern Physics / 4. Standard Model / e. Protons
Most of the mass of a proton is the energy in virtual particles (rather than the quarks) [Krauss]
     Full Idea: The quarks provide very little of the total mass of a proton, and the fields created by the virtual particles contribute most of the energy that goes into the proton's rest energy and, hence, its mass.
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 04)
     A reaction: He gives an artist's impression of the interior of a proton, which looks like a ship's engine room.
27. Natural Reality / C. Space / 2. Space
We could ignore space, and just talk of the shape of matter [Hossack]
     Full Idea: We might dispense with substantival space, and say that if the distribution of matter in space could have been different, that just means the matter of the Universe could have been shaped differently (with geometry as the science of shapes).
     From: Keith Hossack (Plurals and Complexes [2000], 9)
Empty space contains a continual flux of brief virtual particles [Krauss]
     Full Idea: Empty space is complicated. It is a boiling brew of virtual particles that pop in and out of existence in a time so short we cannot see them directly.
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 10)
     A reaction: Apparently the interior of a proton is also like this. This fact gives a foot in the door for explanations of how the Big Bang got started, from these virtual particles. And yet surely space itself only arrives with the Big Bang?
27. Natural Reality / E. Cosmology / 3. The Beginning
The universe is precisely 13.72 billion years old [Krauss]
     Full Idea: We now know the age of the universe to four significant figures. It is 13.72 billion years old!
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 05)
     A reaction: It amazes me how many people, especially in philosophy, would be reluctant to accept that this is a know fact. I'm not accepting its certainty, but an assertion like this from a leading figure is good enough for me, and it should be for you.
27. Natural Reality / E. Cosmology / 10. Multiverse
It seems likely that cosmic inflation is eternal, and this would make a multiverse inevitable [Krauss]
     Full Idea: A multiverse is inevitable if inflation is eternal, and eternal inflation is by far the most likely possibility in most, if not all, inflationary scenarios.
     From: Lawrence M. Krauss (A Universe from Nothing [2012], 08)