Combining Philosophers

All the ideas for H.Putnam/P.Oppenheim, Kenneth Kunen and Paul Thagard

unexpand these ideas     |    start again     |     specify just one area for these philosophers


26 ideas

2. Reason / A. Nature of Reason / 6. Coherence
Coherence problems have positive and negative restraints; solutions maximise constraint satisfaction [Thagard]
     Full Idea: A coherence problem is a set of elements connected by positive and negative restraints, and a solution consists of partitioning the elements into two sets (accepted and rejected) in a way that maximises satisfaction of the constraints.
     From: Paul Thagard (Coherence: The Price is Right [2012], p.42)
     A reaction: I'm enthusiastic about this, as it begins to clarify the central activity of epistemology, which is the quest for best explanations.
Coherence is explanatory, deductive, conceptual, analogical, perceptual, and deliberative [Thagard]
     Full Idea: I propose that there are six main kinds of coherence: explanatory, deductive, conceptual, analogical, perceptual, and deliberative. ...Epistemic coherence is a combination of the first five kinds, and ethics adds the sixth.
     From: Paul Thagard (Coherence: The Price is Right [2012], p.43)
     A reaction: Wonderful. Someone is getting to grips with the concept of coherence, instead of just whingeing about how vague it is.
Explanatory coherence needs symmetry,explanation,analogy,data priority, contradiction,competition,acceptance [Thagard]
     Full Idea: Informally, a theory of explanatory coherence has the principles of symmetry, explanation, analogy, data priority, contradiction, competition and acceptance.
     From: Paul Thagard (Coherence: The Price is Right [2012], p.44)
     A reaction: [Thagard give a concise summary of his theory here] Again Thagard makes a wonderful contribution in an area where most thinkers are pessimistic about making any progress. His principles are very plausible.
3. Truth / A. Truth Problems / 6. Verisimilitude
Verisimilitude comes from including more phenomena, and revealing what underlies [Thagard]
     Full Idea: A scientific theory is progressively approximating the truth if it increases its explanatory coherence by broadening to more phenomena and deepening by investigating layers of mechanisms.
     From: Paul Thagard (Coherence: The Price is Right [2012], p.46)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
8. Modes of Existence / A. Relations / 4. Formal Relations / b. Equivalence relation
An 'equivalence' relation is one which is reflexive, symmetric and transitive [Kunen]
     Full Idea: R is an equivalence relation on A iff R is reflexive, symmetric and transitive on A.
     From: Kenneth Kunen (The Foundations of Mathematics (2nd ed) [2012], I.7.1)
14. Science / B. Scientific Theories / 1. Scientific Theory
Neither a priori rationalism nor sense data empiricism account for scientific knowledge [Thagard]
     Full Idea: Both rationalists (who start with a priori truths and make deductions) and empiricists (starting with indubitable sense data and what follows) would guarantee truth, but neither even begins to account for scientific knowledge.
     From: Paul Thagard (Coherence: The Price is Right [2012], p.46)
     A reaction: Thagard's answer, and mine, is inference to the best explanation, but goes beyond both the a priori truths and the perceptions.
14. Science / C. Induction / 6. Bayes's Theorem
Bayesian inference is forced to rely on approximations [Thagard]
     Full Idea: It is well known that the general problem with Bayesian inference is that it is computationally intractable, so the algorithms used for computing posterior probabilities have to be approximations.
     From: Paul Thagard (Coherence: The Price is Right [2012], p.45)
     A reaction: Thagard makes this sound devastating, but then concedes that all theories have to rely on approximations, so I haven't quite grasped this idea. He gives references.
14. Science / D. Explanation / 2. Types of Explanation / c. Explanations by coherence
1: Coherence is a symmetrical relation between two propositions [Thagard, by Smart]
     Full Idea: 1: Coherence and incoherence are symmetrical between pairs of propositions.
     From: report of Paul Thagard (Explanatory Coherence [1989], 1) by J.J.C. Smart - Explanation - Opening Address p.04
2: An explanation must wholly cohere internally, and with the new fact [Thagard, by Smart]
     Full Idea: 2: If a set of propositions explains a further proposition, then each proposition in the set coheres with that proposition, and propositions in the set cohere pairwise with one another.
     From: report of Paul Thagard (Explanatory Coherence [1989], 2) by J.J.C. Smart - Explanation - Opening Address p.04
3: If an analogous pair explain another analogous pair, then they all cohere [Thagard, by Smart]
     Full Idea: 3: If two analogous propositions separately explain different ones of a further pair of analogous propositions, then the first pair cohere with one another, and so do the second (explananda) pair.
     From: report of Paul Thagard (Explanatory Coherence [1989], 3) by J.J.C. Smart - Explanation - Opening Address p.04
4: For coherence, observation reports have a degree of intrinsic acceptability [Thagard, by Smart]
     Full Idea: 4: Observation reports (for coherence) have a degree of acceptability on their own.
     From: report of Paul Thagard (Explanatory Coherence [1989], 4) by J.J.C. Smart - Explanation - Opening Address p.04
     A reaction: Thagard makes this an axiom, but Smart rejects that and says there is no reason why observation reports should not also be accepted because of their coherence (with our views about our senses etc.). I agree with Smart.
5: Contradictory propositions incohere [Thagard, by Smart]
     Full Idea: 5: Contradictory propositions incohere.
     From: report of Paul Thagard (Explanatory Coherence [1989], 5) by J.J.C. Smart - Explanation - Opening Address p.04
     A reaction: This has to be a minimal axiom for coherence, but coherence is always taken to be more than mere logical consistency. Mutual relevance is the first step. At least there must be no category mistakes.
6: A proposition's acceptability depends on its coherence with a system [Thagard, by Smart]
     Full Idea: 6: Acceptability of a proposition in a system depends on its coherence with the propositions in that system.
     From: report of Paul Thagard (Explanatory Coherence [1989], 6) by J.J.C. Smart - Explanation - Opening Address p.04
     A reaction: Thagard tried to build an AI system for coherent explanations, but I would say he has no chance with these six axioms, because they never grasp the nettle of what 'coherence' means. You first need rules for how things relate. What things are comparable?
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?
14. Science / D. Explanation / 3. Best Explanation / a. Best explanation
The best theory has the highest subjective (Bayesian) probability? [Thagard]
     Full Idea: On the Bayesian view, the best theory is the one with the highest subjective probability, given the evidence as calculated by Bayes's theorem.
     From: Paul Thagard (Coherence: The Price is Right [2012], p.45)