Combining Philosophers

All the ideas for Henry of Ghent, Fraser MacBride and George Cantor

unexpand these ideas     |    start again     |     specify just one area for these philosophers


78 ideas

3. Truth / A. Truth Problems / 2. Defining Truth
We might define truth as arising from the truth-maker relation [MacBride]
     Full Idea: We might define truth using the truth-maker relation, albeit in a roundabout way, according to the pattern of saying 'S is true' is equivalent to 'there is something which makes S true'.
     From: Fraser MacBride (Truthmakers [2013], 3.3)
     A reaction: [MacBride gives it more algebraically, but I prefer English!] You would need to explain 'truth-making' without reference to truth. Horwich objects, reasonably, that ordinary people grasp 'truth' much more clearly than 'truth-making'. Bad idea, I think.
3. Truth / B. Truthmakers / 1. For Truthmakers
Phenomenalists, behaviourists and presentists can't supply credible truth-makers [MacBride]
     Full Idea: For Martin the fatal error of phenomenalists was their inability to supply credible truth-makers for truths about unobserved objects; the same error afflicted Ryle's behaviourism, ...and Prior's Presentism (for past-tensed and future-tensed truths).
     From: Fraser MacBride (Truthmakers [2013], 3.1)
     A reaction: This seems to be the original motivation for the modern rise of the truthmaker idea. Personally I find 'Napoleon won at Austerlitz' is a perfectly good past-tensed truthmaker which is compatible with presentism. Truth-making is an excellent challenge.
3. Truth / B. Truthmakers / 2. Truthmaker Relation
If truthmaking is classical entailment, then anything whatsoever makes a necessary truth [MacBride]
     Full Idea: If a truthmaker entails its truth, this threatens to over-generate truth-makers for necessary truths - at least if the entailment is classical. It's a feature of this notion that anything whatsoever entails a given necessary truth.
     From: Fraser MacBride (Truthmakers [2013], 1.1)
     A reaction: This is a good reason to think that the truth-making relation does not consist of logical entailment.
3. Truth / B. Truthmakers / 3. Truthmaker Maximalism
'Maximalism' says every truth has an actual truthmaker [MacBride]
     Full Idea: The principle of 'maximalism' is that for every truth, then there must be something in the world that makes it true.
     From: Fraser MacBride (Truthmakers [2013], 2.1)
     A reaction: That seems to mean that no truths can be uttered about anything which is not in the world. If I say 'pigs might have flown', that isn't about the modal profile of actual pigs, it is about what might have resulted from that profile.
Maximalism follows Russell, and optimalism (no negative or universal truthmakers) follows Wittgenstein [MacBride]
     Full Idea: If maximalism is intellectual heir to Russell's logical atomism, then 'optimalism' (the denial that universal and negative statements need truth-makers) is heir to Wittgenstein's version, where only atomic propositions represent states of affairs.
     From: Fraser MacBride (Truthmakers [2013], 2.2)
     A reaction: Wittgenstein's idea is that you can use the logical connectives to construct all the other universal and negative facts. 'Optimalism' restricts truthmaking to atomic statements.
3. Truth / B. Truthmakers / 5. What Makes Truths / a. What makes truths
The main idea of truth-making is that what a proposition is about is what matters [MacBride]
     Full Idea: According the Lewis, the kernel of truth in truth-making is the idea that propositions have a subject matter. They are about things, so whether they are true or false depends on how those things stand.
     From: Fraser MacBride (Truthmakers [2013], 2.4.1)
     A reaction: [Lewis 'Things Qua Truth-makers' 2003] That sounds like the first step in the story, rather than the 'kernel' of the truth-making approach.
3. Truth / B. Truthmakers / 6. Making Negative Truths
There are different types of truthmakers for different types of negative truth [MacBride]
     Full Idea: We recognise that what makes it true that there is no oil in this engine is different from what makes it true that there are no dodos left.
     From: Fraser MacBride (Truthmakers [2013], 2.1.4.1)
     A reaction: This looks like a local particular negation up against a universal negation. I'm not sure there is a big difference between 'my dodo's gone missing' (like my oil), and 'all the dodos have gone permanently missing'.
There aren't enough positive states out there to support all the negative truths [MacBride]
     Full Idea: It's not obvious that there are enough positive states out there to underwrite all the negative truths. Even though it may be true that this liquid is odourless this needn't be because there's something further about it that excludes its being odourless.
     From: Fraser MacBride (Truthmakers [2013], 2.1.4.1)
     A reaction: What is the ontological status of all these hypothetical truths? What is the truthmaker for 'a trillion trillion negative truths exist'? What is the status of 'this is not not-red'?
3. Truth / B. Truthmakers / 8. Making General Truths
Optimalists say that negative and universal are true 'by default' from the positive truths [MacBride]
     Full Idea: Optimalists say that negative truths are 'true by default' (having the opposite truth value of p), and universal truths are too. Universal truths are equivalent to negative existential truths, which are true by default.
     From: Fraser MacBride (Truthmakers [2013], 2.2)
     A reaction: The background idea is Wittgenstein's, that if p is false, then not-p is true by default, without anyone having to assert the negation. This strikes me as a very promising approach to truthmaking. See Simons 2008.
3. Truth / B. Truthmakers / 12. Rejecting Truthmakers
Does 'this sentence has no truth-maker' have a truth-maker? Reductio suggests it can't have [MacBride]
     Full Idea: If the sentence 'This sentence has no truth-maker' has a truth-maker, then it must be true. But then what it says must be the case, so it has no truth-maker. Hence by reductio the sentence has no truth-maker.
     From: Fraser MacBride (Truthmakers [2013], 2.1.1)
     A reaction: [Argument proposed by Peter Milne 2005] Rodriguez-Pereyra replies that the sentence is meaningless, so that it can't possibly be true. The Liar sentence is also said to be meaningless. The argument opposes Maximalism.
Even idealists could accept truthmakers, as mind-dependent [MacBride]
     Full Idea: Even an idealist could accept that there are truth-makers whilst thinking of them as mind-dependent entities.
     From: Fraser MacBride (Truthmakers [2013], 3.1)
     A reaction: This undercuts anyone (me, perhaps?) who was hoping to prop up their robust realism with an angry demand to be shown the truthmakers.
Maybe 'makes true' is not an active verb, but just a formal connective like 'because'? [MacBride]
     Full Idea: Maybe the truth-maker panegyrists have misconstrued the logical form of 'makes true'. They have taken it to be a verb like 'x hits y', when really it is akin to the connective '→' or 'because'.
     From: Fraser MacBride (Truthmakers [2013], 3.7)
     A reaction: [He cites Melia 2005] This isn't any sort of refutation of truth-making, but an offer of how to think of the phenomenon if you reject the big principle. I like truth-making, but resist the 'makes' that brings unthought propositions into existence.
Truthmaker talk of 'something' making sentences true, which presupposes objectual quantification [MacBride]
     Full Idea: When supporters of truth-making talk of 'something' which makes a sentence true, they make the assumption that it is an objectual quantifier in name position.
     From: Fraser MacBride (Truthmakers [2013], 3.8)
     A reaction: We might say, more concisely, that they are 'reifying' the something. This makes it sound as if Armstrong and Bigelow have made a mistake, but that are simply asserting that this particular quantification is indeed objectual.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Trying to represent curves, we study arbitrary functions, leading to the ordinals, which produces set theory [Cantor, by Lavine]
     Full Idea: The notion of a function evolved gradually from wanting to see what curves can be represented as trigonometric series. The study of arbitrary functions led Cantor to the ordinal numbers, which led to set theory.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
Cantor developed sets from a progression into infinity by addition, multiplication and exponentiation [Cantor, by Lavine]
     Full Idea: Cantor's development of set theory began with his discovery of the progression 0, 1, ....∞, ∞+1, ∞+2, ..∞x2, ∞x3, ...∞^2, ..∞^3, ...∞^∞, ...∞^∞^∞.....
     From: report of George Cantor (Grundlagen (Foundations of Theory of Manifolds) [1883]) by Shaughan Lavine - Understanding the Infinite VIII.2
A set is a collection into a whole of distinct objects of our intuition or thought [Cantor]
     Full Idea: A set is any collection into a whole M of definite, distinct objects m ... of our intuition or thought.
     From: George Cantor (The Theory of Transfinite Numbers [1897], p.85), quoted by James Robert Brown - Philosophy of Mathematics Ch.2
     A reaction: This is the original conception of a set, which hit trouble with Russell's Paradox. Cantor's original definition immediately invites thoughts about the status of vague objects.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
Cantor's Theorem: for any set x, its power set P(x) has more members than x [Cantor, by Hart,WD]
     Full Idea: Cantor's Theorem says that for any set x, its power set P(x) has more members than x.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
Cantor proved that all sets have more subsets than they have members [Cantor, by Bostock]
     Full Idea: Cantor's diagonalisation argument generalises to show that any set has more subsets than it has members.
     From: report of George Cantor (works [1880]) by David Bostock - Philosophy of Mathematics 4.5
     A reaction: Thus three members will generate seven subsets. This means that 'there is no end to the series of cardinal numbers' (Bostock p.106).
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
If a set is 'a many thought of as one', beginners should protest against singleton sets [Cantor, by Lewis]
     Full Idea: Cantor taught that a set is 'a many, which can be thought of as one'. ...After a time the unfortunate beginner student is told that some classes - the singletons - have only a single member. Here is a just cause for student protest, if ever there was one.
     From: report of George Cantor (works [1880]) by David Lewis - Parts of Classes 2.1
     A reaction: There is a parallel question, almost lost in the mists of time, of whether 'one' is a number. 'Zero' is obviously dubious, but if numbers are for counting, that needs units, so the unit is the precondition of counting, not part of it.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Cantor showed that supposed contradictions in infinity were just a lack of clarity [Cantor, by Potter]
     Full Idea: Cantor's theories exhibited the contradictions others had claimed to derive from the supposition of infinite sets as confusions resulting from the failure to mark the necessary distinctions with sufficient clarity.
     From: report of George Cantor (works [1880]) by Michael Potter - Set Theory and Its Philosophy Intro 1
The continuum is the powerset of the integers, which moves up a level [Cantor, by Clegg]
     Full Idea: Cantor discovered that the continuum is the powerset of the integers. While adding or multiplying infinities didn't move up a level of complexity, multiplying a number by itself an infinite number of times did.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Cantor gives informal versions of ZF axioms as ways of getting from one set to another [Cantor, by Lake]
     Full Idea: Cantor gives informal versions of the axioms of ZF as ways of getting from one set to another.
     From: report of George Cantor (Later Letters to Dedekind [1899]) by John Lake - Approaches to Set Theory 1.6
     A reaction: Lake suggests that it should therefore be called CZF.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
The Axiom of Union dates from 1899, and seems fairly obvious [Cantor, by Maddy]
     Full Idea: Cantor first stated the Union Axiom in a letter to Dedekind in 1899. It is nearly too obvious to deserve comment from most commentators. Justifications usually rest on 'limitation of size' or on the 'iterative conception'.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Surely someone can think of some way to challenge it! An opportunity to become notorious, and get invited to conferences.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / b. Combinatorial sets
Cantor's sets were just collections, but Dedekind's were containers [Cantor, by Oliver/Smiley]
     Full Idea: Cantor's definition of a set was a collection of its members into a whole, but within a few years Dedekind had the idea of a set as a container, enclosing its members like a sack.
     From: report of George Cantor (works [1880]) by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: As the article goes on to show, these two view don't seem significantly different until you start to ask about the status of the null set and of singletons. I intuitively vote for Dedekind. Set theory is the study of brackets.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Connectives link sentences without linking their meanings [MacBride]
     Full Idea: The 'connectives' are expressions that link sentences but without expressing a relation that holds between the states of affairs, facts or tropes that these sentences denote.
     From: Fraser MacBride (Truthmakers [2013], 3.7)
     A reaction: MacBride notes that these contrast with ordinary verbs, which do express meaningful relations.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / c. not
'A is F' may not be positive ('is dead'), and 'A is not-F' may not be negative ('is not blind') [MacBride]
     Full Idea: Statements of the form 'a is F' aren't invariably positive ('a is dead'), and nor are statements of the form 'a isn't F' ('a isn't blind') always negative.
     From: Fraser MacBride (Truthmakers [2013], 2.1.4)
     A reaction: The point is that the negation may be implicit in the predicate. There are many ways to affirm or deny something, other than by use of the standard syntax.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
There are infinite sets that are not enumerable [Cantor, by Smith,P]
     Full Idea: Cantor's Theorem (1874) says there are infinite sets that are not enumerable. This is proved by his 1891 'diagonal argument'.
     From: report of George Cantor (works [1880]) by Peter Smith - Intro to Gödel's Theorems 2.3
     A reaction: [Smith summarises the diagonal argument]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / b. Cantor's paradox
Cantor's Paradox: the power set of the universe must be bigger than the universe, yet a subset of it [Cantor, by Hart,WD]
     Full Idea: The problem of Cantor's Paradox is that the power set of the universe has to be both bigger than the universe (by Cantor's theorem) and not bigger (since it is a subset of the universe).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 3
     A reaction: Russell eliminates the 'universe' in his theory of types. I don't see why you can't just say that the members of the set are hypothetical rather than real, and that hypothetically the universe might contain more things than it does.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The powerset of all the cardinal numbers is required to be greater than itself [Cantor, by Friend]
     Full Idea: Cantor's Paradox says that the powerset of a set has a cardinal number strictly greater than the original set, but that means that the powerset of the set of all the cardinal numbers is greater than itself.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: Friend cites this with the Burali-Forti paradox and the Russell paradox as the best examples of the problems of set theory in the early twentieth century. Did this mean that sets misdescribe reality, or that we had constructed them wrongly?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Cantor named the third realm between the finite and the Absolute the 'transfinite' [Cantor, by Lavine]
     Full Idea: Cantor believed he had discovered that between the finite and the 'Absolute', which is 'incomprehensible to the human understanding', there is a third category, which he called 'the transfinite'.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Cantor proved the points on a plane are in one-to-one correspondence to the points on a line [Cantor, by Lavine]
     Full Idea: In 1878 Cantor published the unexpected result that one can put the points on a plane, or indeed any n-dimensional space, into one-to-one correspondence with the points on a line.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Cantor took the ordinal numbers to be primary [Cantor, by Tait]
     Full Idea: Cantor took the ordinal numbers to be primary: in his generalization of the cardinals and ordinals into the transfinite, it is the ordinals that he calls 'numbers'.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind VI
     A reaction: [Tait says Dedekind also favours the ordinals] It is unclear how the matter might be settled. Humans cannot give the cardinality of large groups without counting up through the ordinals. A cardinal gets its meaning from its place in the ordinals?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / d. Natural numbers
Cantor presented the totality of natural numbers as finite, not infinite [Cantor, by Mayberry]
     Full Idea: Cantor taught us to regard the totality of natural numbers, which was formerly thought to be infinite, as really finite after all.
     From: report of George Cantor (works [1880]) by John Mayberry - What Required for Foundation for Maths? p.414-2
     A reaction: I presume this is because they are (by definition) countable.
Numbers are identified by their main properties and relations, involving the successor function [MacBride]
     Full Idea: The mathematically significant properties and relations of natural numbers arise from the successor function that orders them; the natural numbers are identified simply as the objects that answer to this basic function.
     From: Fraser MacBride (Structuralism Reconsidered [2007], §1)
     A reaction: So Julius Caesar would be a number if he was the successor of Pompey the Great? I would have thought that counting should be mentioned - cardinality as well as ordinality. Presumably Peano's Axioms are being referred to.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Cantor introduced the distinction between cardinals and ordinals [Cantor, by Tait]
     Full Idea: Cantor introduced the distinction between cardinal and ordinal numbers.
     From: report of George Cantor (works [1880]) by William W. Tait - Frege versus Cantor and Dedekind Intro
     A reaction: This seems remarkably late for what looks like a very significant clarification. The two concepts coincide in finite cases, but come apart in infinite cases (Tait p.58).
Cantor showed that ordinals are more basic than cardinals [Cantor, by Dummett]
     Full Idea: Cantor's work revealed that the notion of an ordinal number is more fundamental than that of a cardinal number.
     From: report of George Cantor (works [1880]) by Michael Dummett - Frege philosophy of mathematics Ch.23
     A reaction: Dummett makes it sound like a proof, which I find hard to believe. Is the notion that I have 'more' sheep than you logically prior to how many sheep we have? If I have one more, that implies the next number, whatever that number may be. Hm.
Ordinals are generated by endless succession, followed by a limit ordinal [Cantor, by Lavine]
     Full Idea: Ordinal numbers are generated by two principles: each ordinal has an immediate successor, and each unending sequence has an ordinal number as its limit (that is, an ordinal that is next after such a sequence).
     From: report of George Cantor (Grundlagen (Foundations of Theory of Manifolds) [1883]) by Shaughan Lavine - Understanding the Infinite III.4
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A cardinal is an abstraction, from the nature of a set's elements, and from their order [Cantor]
     Full Idea: The cardinal number of M is the general idea which, by means of our active faculty of thought, is deduced from the collection M, by abstracting from the nature of its diverse elements and from the order in which they are given.
     From: George Cantor (works [1880]), quoted by Bertrand Russell - The Principles of Mathematics §284
     A reaction: [Russell cites 'Math. Annalen, XLVI, §1'] See Fine 1998 on this.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Cantor tried to prove points on a line matched naturals or reals - but nothing in between [Cantor, by Lavine]
     Full Idea: Cantor said he could show that every infinite set of points on the line could be placed into one-to-one correspondence with either the natural numbers or the real numbers - with no intermediate possibilies (the Continuum hypothesis). His proof failed.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.1
Cantor's diagonal argument proved you can't list all decimal numbers between 0 and 1 [Cantor, by Read]
     Full Idea: Cantor's diagonal argument showed that all the infinite decimals between 0 and 1 cannot be written down even in a single never-ending list.
     From: report of George Cantor (works [1880]) by Stephen Read - Thinking About Logic Ch.6
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
A real is associated with an infinite set of infinite Cauchy sequences of rationals [Cantor, by Lavine]
     Full Idea: Cantor's theory of Cauchy sequences defines a real number to be associated with an infinite set of infinite sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II.6
     A reaction: This sounds remarkably like the endless decimals we use when we try to write down an actual real number.
Irrational numbers are the limits of Cauchy sequences of rational numbers [Cantor, by Lavine]
     Full Idea: Cantor introduced irrationals to play the role of limits of Cauchy sequences of rational numbers.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite 4.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Irrationals and the Dedekind Cut implied infinite classes, but they seemed to have logical difficulties [Cantor, by Lavine]
     Full Idea: From the very nature of an irrational number, it seems necessary to understand the mathematical infinite thoroughly before an adequate theory of irrationals is possible. Infinite classes are obvious in the Dedekind Cut, but have logical difficulties
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite II Intro
     A reaction: Almost the whole theory of analysis (calculus) rested on the irrationals, so a theory of the infinite was suddenly (in the 1870s) vital for mathematics. Cantor wasn't just being eccentric or mystical.
It was Cantor's diagonal argument which revealed infinities greater than that of the real numbers [Cantor, by Lavine]
     Full Idea: Cantor's 1891 diagonal argument revealed there are infinitely many infinite powers. Indeed, it showed more: it shows that given any set there is another of greater power. Hence there is an infinite power strictly greater than that of the set of the reals.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite III.2
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Cantor proposes that there won't be a potential infinity if there is no actual infinity [Cantor, by Hart,WD]
     Full Idea: What we might call 'Cantor's Thesis' is that there won't be a potential infinity of any sort unless there is an actual infinity of some sort.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: This idea is nicely calculated to stop Aristotle in his tracks.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
The naturals won't map onto the reals, so there are different sizes of infinity [Cantor, by George/Velleman]
     Full Idea: Cantor showed that the complete totality of natural numbers cannot be mapped 1-1 onto the complete totality of the real numbers - so there are different sizes of infinity.
     From: report of George Cantor (works [1880]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.4
Cantor needed Power Set for the reals, but then couldn't count the new collections [Cantor, by Lavine]
     Full Idea: Cantor grafted the Power Set axiom onto his theory when he needed it to incorporate the real numbers, ...but his theory was supposed to be theory of collections that can be counted, but he didn't know how to count the new collections.
     From: report of George Cantor (The Theory of Transfinite Numbers [1897]) by Shaughan Lavine - Understanding the Infinite I
     A reaction: I take this to refer to the countability of the sets, rather than the members of the sets. Lavine notes that counting was Cantor's key principle, but he now had to abandon it. Zermelo came to the rescue.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
CH: An infinite set of reals corresponds 1-1 either to the naturals or to the reals [Cantor, by Koellner]
     Full Idea: Cantor's Continuum Hypothesis (CH) says that for every infinite set X of reals there is either a one-to-one correspondence between X and the natural numbers, or between X and the real numbers.
     From: report of George Cantor (works [1880]) by Peter Koellner - On the Question of Absolute Undecidability 1.2
     A reaction: Every single writer I read defines this differently, which drives me crazy, but is also helpfully illuminating. There is a moral there somewhere.
Cantor: there is no size between naturals and reals, or between a set and its power set [Cantor, by Hart,WD]
     Full Idea: Cantor conjectured that there is no size between those of the naturals and the reals - called the 'continuum hypothesis'. The generalized version says that for no infinite set A is there a set larger than A but smaller than P(A).
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: Thus there are gaps between infinite numbers, and the power set is the next size up from any infinity. Much discussion as ensued about whether these two can be proved.
Cantor's Continuum Hypothesis says there is a gap between the natural and the real numbers [Cantor, by Horsten]
     Full Idea: Cantor's Continuum Hypothesis states that there are no sets which are too large for there to be a one-to-one correspondence between the set and the natural numbers, but too small for there to exist a one-to-one correspondence with the real numbers.
     From: report of George Cantor (works [1880]) by Leon Horsten - Philosophy of Mathematics §5.1
Continuum Hypothesis: there are no sets between N and P(N) [Cantor, by Wolf,RS]
     Full Idea: Cantor's conjecture (the Continuum Hypothesis) is that there are no sets between N and P(N). The 'generalized' version replaces N with an arbitrary infinite set.
     From: report of George Cantor (works [1880]) by Robert S. Wolf - A Tour through Mathematical Logic 2.2
     A reaction: The initial impression is that there is a single gap in the numbers, like a hole in ozone layer, but the generalised version implies an infinity of gaps. How can there be gaps in the numbers? Weird.
Continuum Hypothesis: no cardinal greater than aleph-null but less than cardinality of the continuum [Cantor, by Chihara]
     Full Idea: Cantor's Continuum Hypothesis was that there is no cardinal number greater than aleph-null but less than the cardinality of the continuum.
     From: report of George Cantor (works [1880]) by Charles Chihara - A Structural Account of Mathematics 05.1
     A reaction: I have no view on this (have you?), but the proposal that there are gaps in the number sequences has to excite all philosophers.
The Continuum Hypothesis says there are no sets between the natural numbers and reals [Cantor, by Shapiro]
     Full Idea: Cantor's 'continuum hypothesis' is the assertion that there are no infinite cardinalities strictly between the size of the natural numbers and the size of the real numbers.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Thinking About Mathematics 2.4
     A reaction: The tricky question is whether this hypothesis can be proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Cantor extended ordinals into the transfinite, and they can thus measure infinite cardinalities [Cantor, by Maddy]
     Full Idea: Cantor's second innovation was to extend the sequence of ordinal numbers into the transfinite, forming a handy scale for measuring infinite cardinalities.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: Struggling with this. The ordinals seem to locate the cardinals, but in what sense do they 'measure' them?
Cantor's theory concerns collections which can be counted, using the ordinals [Cantor, by Lavine]
     Full Idea: Cantor's set theory was not of collections in some familiar sense, but of collections that can be counted using the indexes - the finite and transfinite ordinal numbers. ..He treated infinite collections as if they were finite.
     From: report of George Cantor (works [1880]) by Shaughan Lavine - Understanding the Infinite I
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Cardinality strictly concerns one-one correspondence, to test infinite sameness of size [Cantor, by Maddy]
     Full Idea: Cantor's first innovation was to treat cardinality as strictly a matter of one-to-one correspondence, so that the question of whether two infinite sets are or aren't of the same size suddenly makes sense.
     From: report of George Cantor (works [1880]) by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: It makes sense, except that all sets which are infinite but countable can be put into one-to-one correspondence with one another. What's that all about, then?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The 'extension of a concept' in general may be quantitatively completely indeterminate [Cantor]
     Full Idea: The author entirely overlooks the fact that the 'extension of a concept' in general may be quantitatively completely indeterminate. Only in certain cases is the 'extension of a concept' quantitatively determinate.
     From: George Cantor (Review of Frege's 'Grundlagen' [1885], 1932:440), quoted by William W. Tait - Frege versus Cantor and Dedekind
     A reaction: Cantor presumably has in mind various infinite sets. Tait is drawing our attention to the fact that this objection long precedes Russell's paradox, which made the objection more formal (a language Frege could understand!).
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Property extensions outstrip objects, so shortage of objects caused the Caesar problem [Cantor, by Shapiro]
     Full Idea: Cantor's theorem entails that there are more property extensions than objects. So there are not enough objects in any domain to serve as extensions for that domain. So Frege's view that numbers are objects led to the Caesar problem.
     From: report of George Cantor (works [1880]) by Stewart Shapiro - Philosophy of Mathematics 4.6
     A reaction: So the possibility that Caesar might have to be a number arises because otherwise we are threatening to run out of numbers? Is that really the problem?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Pure mathematics is pure set theory [Cantor]
     Full Idea: Pure mathematics ...according to my conception is nothing other than pure set theory.
     From: George Cantor (works [1880], I.1), quoted by Penelope Maddy - Naturalism in Mathematics I.1
     A reaction: [an unpublished paper of 1884] So right at the beginning of set theory this claim was being made, before it was axiomatised, and so on. Zermelo endorsed the view, and it flourished unchallenged until Benacerraf (1965).
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
For mathematical objects to be positions, positions themselves must exist first [MacBride]
     Full Idea: The identification of mathematical objects with positions in structures rests upon the prior credibility of the thesis that positions are objects in their own right.
     From: Fraser MacBride (Structuralism Reconsidered [2007], §3)
     A reaction: Sounds devastating, but something has to get the whole thing off the ground. This is why Resnik's word 'patterns' is so appealing. Patterns stare you in the face, and they don't change if all the objects making it up are replaced by others.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Cantor says that maths originates only by abstraction from objects [Cantor, by Frege]
     Full Idea: Cantor calls mathematics an empirical science in so far as it begins with consideration of things in the external world; on his view, number originates only by abstraction from objects.
     From: report of George Cantor (works [1880]) by Gottlob Frege - Grundlagen der Arithmetik (Foundations) §21
     A reaction: Frege utterly opposed this view, and he seems to have won the day, but I am rather thrilled to find the great Cantor endorsing my own intuitions on the subject. The difficulty is to explain 'abstraction'.
7. Existence / A. Nature of Existence / 6. Criterion for Existence
Maybe it only exists if it is a truthmaker (rather than the value of a variable)? [MacBride]
     Full Idea: 'To be is to be a truth-maker' has been proposed as a replacement the standard conception of ontological commitment, that to be is to be the value of a variable.
     From: Fraser MacBride (Truthmakers [2013], 2.1.4.2)
     A reaction: [He cites Ross Cameron 2008] Unconvincing. What does it mean to say that some remote unexperienced bit of the universe 'makes truths'? How many truths? Where do these truths reside when they aren't doing anything useful?
7. Existence / C. Structure of Existence / 1. Grounding / a. Nature of grounding
Different types of 'grounding' seem to have no more than a family resemblance relation [MacBride]
     Full Idea: The concept of 'grounding' appears to cry out for treatment as a family resemblance concept, a concept whose instances have no more in common than different games do.
     From: Fraser MacBride (Truthmakers [2013], 1.6)
     A reaction: I like the word 'determinations', though MacBride's point my also apply to that. I take causation to be one species of determination, and truth-making to be another. They form a real family, with no adoptees.
Which has priority - 'grounding' or 'truth-making'? [MacBride]
     Full Idea: Some philosophers define 'grounding' in terms of 'truth-making', rather than the other way around.
     From: Fraser MacBride (Truthmakers [2013], 1.6)
     A reaction: [Cameron exemplifies the first, and Schaffer the second] I would have thought that grounding was in the world, but truth-making required the introduction of propositions about the world by minds, so grounding is prior. Schaffer is right.
7. Existence / C. Structure of Existence / 6. Fundamentals / d. Logical atoms
Russell allows some complex facts, but Wittgenstein only allows atomic facts [MacBride]
     Full Idea: The logical atomism of Russell admitted some logically complex facts but not others - in contrast to Wittgenstein's version which admitted only atomic facts.
     From: Fraser MacBride (Truthmakers [2013], 2.1.3)
     A reaction: For truthmakers, it looks as if the Wittgenstein version might do a better job (e.g. with negative truths). I quite like the Russell approach, where complex facts underwrite the logical connectives. Disjunctive, negative, conjunctive, hypothetical facts.
7. Existence / E. Categories / 3. Proposed Categories
Substance, Quantity and Quality are real; other categories depend on those three [Henry of Ghent]
     Full Idea: Among creatures there are only three 'res' belong to the three first categories: Substance, Quantity and Quality. All other are aspects [rationes] and intellectual concepts with respect to them, with reality only as grounded on the res of those three.
     From: Henry of Ghent (Quodlibeta [1284], VII:1-2), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 12.3
     A reaction: Pasnau connects with the 'arrangement of being', giving an 'ontologically innocent' structure to reality. That seems to be what we all want, if only we could work out the ontologically guilty bit.
8. Modes of Existence / A. Relations / 1. Nature of Relations
It may be that internal relations like proportion exist, because we directly perceive it [MacBride]
     Full Idea: Some philosophers maintain that we literally perceive proportions and other internal relations. These relations must exist, otherwise we couldn't perceive them.
     From: Fraser MacBride (Relations [2016], 3)
     A reaction: [He cites Mulligan 1991, and Hochberg 2013:232] This seems a rather good point. You can't perceive the differing heights of two people, yet fail to perceive that one is taller. You also perceive 'below', which is external.
The only reality in the category of Relation is things from another category [Henry of Ghent]
     Full Idea: There is beyond a doubt nothing real in the category of Relation, except what is a thing from another category.
     From: Henry of Ghent (Quodlibeta [1284], VII:1-2), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 12.3
     A reaction: This seems to have been the fairly orthodox scholastic view of relations.
8. Modes of Existence / A. Relations / 2. Internal Relations
Internal relations are fixed by existences, or characters, or supervenience on characters [MacBride]
     Full Idea: Internal relations are determined either by the mere existence of the things they relate, or by their intrinsic characters, or they supervene on the intrinsic characters of the things they relate.
     From: Fraser MacBride (Relations [2016], 3)
     A reaction: Suggesting that they 'supervene' doesn't explain anything (and supervenience never explains anything). I vote for the middle one - the intrinsic character. It has to be something about the existence, and not the mere fact of existence.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
'Multigrade' relations are those lacking a fixed number of relata [MacBride]
     Full Idea: A 'unigrade' relation R has a definite degree or adicity: R is binary, or ternary....or n-ary (for some unique n). By contrast a relation is 'multigrade' if it fails to be unigrade. Causation appears to be multigrade.
     From: Fraser MacBride (Relations [2016], 1)
     A reaction: He also cites entailment, which may have any number of premises.
8. Modes of Existence / B. Properties / 8. Properties as Modes
Accidents are diminished beings, because they are dispositions of substance (unqualified being) [Henry of Ghent]
     Full Idea: Accidents are beings only in a qualified and diminished sense, because they are not called beings, nor are they beings, except because they are dispositions of an unqualified being, a substance.
     From: Henry of Ghent (Quodlibeta [1284], XV.5), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 10.4
     A reaction: This is aimed to 'half' detach the accidents (as the Eucharist requires). Later scholastics detached them completely. Late scholastics seem to have drifted back to Henry's view. The equivocal use of 'being' here was challenged later.
10. Modality / A. Necessity / 6. Logical Necessity
Wittgenstein's plan to show there is only logical necessity failed, because of colours [MacBride]
     Full Idea: It is almost universally acknowledged that Wittgenstein's plan to show all necessity is logical necessity ended in failure - indeed foundered upon the very problem of explaining colour incompatibilities.
     From: Fraser MacBride (Truthmakers [2013], 2.1.4.1)
     A reaction: I'm not sure whether you can 'show' that colour incompatibility is some sort of necessity, though intuitively it seems so. I'm thinking that 'necessity' is a unitary concept, with a wide variety of sources generating it.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / b. Transcendental idealism
Kant says things-in-themselves cause sensations, but then makes causation transcendental! [Henry of Ghent, by Pinkard]
     Full Idea: Kant claimed that things-in-themselves caused our sensations; but causality was a transcendental condition of experience, not a property of things-in-themselves, so the great Kant had contradicted himself.
     From: report of Henry of Ghent (Quodlibeta [1284], Supplement) by Terry Pinkard - German Philosophy 1760-1860 04
     A reaction: This early objection by the conservative Jacobi (who disliked Enlightenment rational religion) is the key to the dispute over whether Kant is an idealist. Kant denied being an idealist, but how can he be, if this idea is correct?
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Infinities expand the bounds of the conceivable; we explore concepts to explore conceivability [Cantor, by Friend]
     Full Idea: Cantor (in his exploration of infinities) pushed the bounds of conceivability further than anyone before him. To discover what is conceivable, we have to enquire into the concept.
     From: report of George Cantor (works [1880]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.5
     A reaction: This remark comes during a discussion of Husserl's phenomenology. Intuitionists challenge Cantor's claim, and restrict what is conceivable to what is provable. Does possibility depend on conceivability?
18. Thought / E. Abstraction / 2. Abstracta by Selection
Cantor says (vaguely) that we abstract numbers from equal sized sets [Hart,WD on Cantor]
     Full Idea: Cantor thought that we abstract a number as something common to all and only those sets any one of which has as many members as any other. ...However one wants to see the logic of the inference. The irony is that set theory lays out this logic.
     From: comment on George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: The logic Hart has in mind is the notion of an equivalence relation between sets. This idea sums up the older and more modern concepts of abstraction, the first as psychological, the second as logical (or trying very hard to be!). Cf Idea 9145.
We form the image of a cardinal number by a double abstraction, from the elements and from their order [Cantor]
     Full Idea: We call 'cardinal number' the general concept which, by means of our active faculty of thought, arises when we make abstraction from an aggregate of its various elements, and of their order. From this double abstraction the number is an image in our mind.
     From: George Cantor (Beitrage [1915], §1), quoted by Kit Fine - Cantorian Abstraction: Recon. and Defence Intro
     A reaction: [compressed] This is the great Cantor, creator of set theory, endorsing the traditional abstractionism which Frege and his followers so despise. Fine offers a defence of it. The Frege view is platonist, because it refuses to connect numbers to the world.
27. Natural Reality / C. Space / 3. Points in Space
Cantor proved that three dimensions have the same number of points as one dimension [Cantor, by Clegg]
     Full Idea: Cantor proved that one-dimensional space has exactly the same number of points as does two dimensions, or our familiar three-dimensional space.
     From: report of George Cantor (works [1880]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.14
28. God / A. Divine Nature / 2. Divine Nature
Only God is absolutely infinite [Cantor, by Hart,WD]
     Full Idea: Cantor said that only God is absolutely infinite.
     From: report of George Cantor (works [1880]) by William D. Hart - The Evolution of Logic 1
     A reaction: We are used to the austere 'God of the philosophers', but this gives us an even more austere 'God of the mathematicians'.