Combining Philosophers

All the ideas for Hermarchus, Henri Poincar and Kenneth Kunen

unexpand these ideas     |    start again     |     specify just one area for these philosophers


19 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
6. Mathematics / A. Nature of Mathematics / 2. Geometry
One geometry cannot be more true than another [Poincaré]
     Full Idea: One geometry cannot be more true than another; it can only be more convenient.
     From: Henri Poincaré (Science and Method [1908], p.65), quoted by Stewart Shapiro - Philosophy of Mathematics
     A reaction: This is the culminating view after new geometries were developed by tinkering with Euclid's parallels postulate.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Poincaré rejected the actual infinite, claiming definitions gave apparent infinity to finite objects [Poincaré, by Lavine]
     Full Idea: Poincaré rejected the actual infinite. He viewed mathematics that is apparently concerned with the actual infinite as actually concerning the finite linguistic definitions the putatively describe actually infinite objects.
     From: report of Henri Poincaré (On the Nature of Mathematical Reasoning [1894]) by Shaughan Lavine - Understanding the Infinite
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematicians do not study objects, but relations between objects [Poincaré]
     Full Idea: Mathematicians do not study objects, but relations between objects; it is a matter of indifference if the objects are replaced by others, provided the relations do not change. They are interested in form alone, not matter.
     From: Henri Poincaré (Science and Hypothesis [1902], p.20), quoted by E Reck / M Price - Structures and Structuralism in Phil of Maths §6
     A reaction: This connects modern structuralism with Aritotle's interest in the 'form' of things. Contrary to the views of the likes of Frege, it is hard to see that the number '7' has any properties at all, apart from its relations. A daffodil would do just as well.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Convention, yes! Arbitrary, no! [Poincaré, by Putnam]
     Full Idea: Poincaré once exclaimed, 'Convention, yes! Arbitrary, no!'.
     From: report of Henri Poincaré (talk [1901]) by Hilary Putnam - Models and Reality
     A reaction: An interesting view. It mustn't be assumed that conventions are not rooted in something. Maybe a sort of pragmatism is implied.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Avoid non-predicative classifications and definitions [Poincaré]
     Full Idea: Never consider any objects but those capable of being defined in a finite number of word ...Avoid non-predicative classifications and definitions.
     From: Henri Poincaré (The Logic of Infinity [1909], p.63), quoted by Penelope Maddy - Naturalism in Mathematics II.4
8. Modes of Existence / A. Relations / 4. Formal Relations / b. Equivalence relation
An 'equivalence' relation is one which is reflexive, symmetric and transitive [Kunen]
     Full Idea: R is an equivalence relation on A iff R is reflexive, symmetric and transitive on A.
     From: Kenneth Kunen (The Foundations of Mathematics (2nd ed) [2012], I.7.1)
25. Social Practice / F. Life Issues / 6. Animal Rights
Animals are dangerous and nourishing, and can't form contracts of justice [Hermarchus, by Sedley]
     Full Idea: Hermarchus said that animal killing is justified by considerations of human safety and nourishment and by animals' inability to form contractual relations of justice with us.
     From: report of Hermarchus (fragments/reports [c.270 BCE]) by David A. Sedley - Hermarchus
     A reaction: Could the last argument be used to justify torturing animals? Or could we eat a human who was too brain-damaged to form contracts?
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
The aim of science is just to create a comprehensive, elegant language to describe brute facts [Poincaré, by Harré]
     Full Idea: In Poincaré's view, we try to construct a language within which the brute facts of experience are expressed as comprehensively and as elegantly as possible. The job of science is the forging of a language precisely suited to that purpose.
     From: report of Henri Poincaré (The Value of Science [1906], Pt III) by Rom Harré - Laws of Nature 2
     A reaction: I'm often struck by how obscure and difficult our accounts of self-evident facts can be. Chairs are easy, and the metaphysics of chairs is hideous. Why is that? I'm a robust realist, but I like Poincaré's idea. He permits facts.