Combining Philosophers

All the ideas for Hermarchus, Jennifer Fisher and Kenneth Kunen

unexpand these ideas     |    start again     |     specify just one area for these philosophers


23 ideas

2. Reason / A. Nature of Reason / 1. On Reason
We reach 'reflective equilibrium' when intuitions and theory completely align [Fisher]
     Full Idea: A state of 'reflective equilibrium' is when our theory and our intuitions become completely aligned
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 12.IV)
     A reaction: [Rawls made this concept famous] This is a helpful concept in trying to spell out the ideal which is the dream of believers in 'pure reason' - that there is a goal in which everything comes right. The problem is when people have different intuitions!
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Three-valued logic says excluded middle and non-contradition are not tautologies [Fisher]
     Full Idea: In three-valued logic (L3), neither the law of excluded middle (p or not-p), nor the law of non-contradiction (not(p and not-p)) will be tautologies. If p has the value 'indeterminate' then so will not-p.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 07.I)
     A reaction: I quite accept that the world is full of indeterminate propositions, and that excluded middle and non-contradiction can sometimes be uncertain, but I am reluctant to accept that what is being offered here should be called 'logic'.
4. Formal Logic / E. Nonclassical Logics / 4. Fuzzy Logic
Fuzzy logic has many truth values, ranging in fractions from 0 to 1 [Fisher]
     Full Idea: In fuzzy logic objects have properties to a greater or lesser degree, and truth values are given as fractions or decimals, ranging from 0 to 1. Not-p is defined as 1-p, and other formula are defined in terms of maxima and minima for sets.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 07.II)
     A reaction: The question seems to be whether this is actually logic, or a recasting of probability theory. Susan Haack attacks it. If logic is the study of how truth is preserved as we move between propositions, then 0 and 1 need a special status.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic is: excluded middle, non-contradiction, contradictions imply all, disjunctive syllogism [Fisher]
     Full Idea: For simplicity, we can say that 'classical logic' amounts to the truth of four sentences: 1) either p or not-p; 2) it is not the case that both p and not-p; 3) from p and not-p, infer q; 4) from p or q and not-p, infer q.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 12.I)
     A reaction: [She says there are many ways of specifying classical logic] Intuition suggests that 2 and 4 are rather hard to dispute, while 1 is ignoring some grey areas, and 3 is totally ridiculous. There is, of course, plenty of support for 3!
5. Theory of Logic / C. Ontology of Logic / 2. Platonism in Logic
Logic formalizes how we should reason, but it shouldn't determine whether we are realists [Fisher]
     Full Idea: Even if one is inclined to be a realist about everything, it is hard to see why our logic should be the determiner. Logic is supposed to formalize how we ought to reason, but whether or not we should be realists is a matter of philosophy, not logic.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 09.I)
     A reaction: Nice to hear a logician saying this. I do not see why talk in terms of an object is a commitment to its existence. We can discuss the philosopher's stone, or Arthur's sword, or the Loch Ness monster, or gravitinos, with degrees of commitment.
7. Existence / D. Theories of Reality / 10. Vagueness / g. Degrees of vagueness
We could make our intuitions about heaps precise with a million-valued logic [Fisher]
     Full Idea: We could construct a 1,000,000-valued logic that would allow our intuitions concerning a heap to vary exactly with the amount of sand in the heap.
     From: Jennifer Fisher (On the Philosophy of Logic [2008])
     A reaction: Presumably only an infinite number of grains of sand would then produce a true heap, and even one grain would count as a bit of a heap, which must both be wrong, so I can't see this helping much.
8. Modes of Existence / A. Relations / 4. Formal Relations / b. Equivalence relation
An 'equivalence' relation is one which is reflexive, symmetric and transitive [Kunen]
     Full Idea: R is an equivalence relation on A iff R is reflexive, symmetric and transitive on A.
     From: Kenneth Kunen (The Foundations of Mathematics (2nd ed) [2012], I.7.1)
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vagueness can involve components (like baldness), or not (like boredom) [Fisher]
     Full Idea: Vague terms come in at least two different kinds: those whose constituent parts come in discrete packets (bald, rich, red) and those that don't (beauty, boredom, niceness).
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 07.II)
     A reaction: The first group seem to be features of the external world, and the second all occur in the mind. Baldness may be vague, but presumably hairs are (on the whole) not. Nature doesn't care whether someone is actually 'bald' or not.
10. Modality / B. Possibility / 1. Possibility
We can't explain 'possibility' in terms of 'possible' worlds [Fisher]
     Full Idea: Explaining 'it is possible that p' by saying p is true in at least one possible world doesn't get me very far. If I don't understand what possibility is, then appealing to possible worlds is not going to do me much good.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 06.III)
     A reaction: This seems so blatant that I assume friends of possible worlds will have addressed the problem. Note that you will also need to understand 'possible' to define necessity as 'true in all possible worlds'. Necessarily-p is not-possibly-not-p.
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
If all truths are implied by a falsehood, then not-p might imply both q and not-q [Fisher]
     Full Idea: If all truths are implied by a falsehood, then 'if there are no trees in the park then there is no shade' and 'if there are no trees in the park there is plenty of shade' both come out as true. Intuitively, though, the second one is false.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 08.I)
     A reaction: The rule that a falsehood implies all truths must be the weakest idea in classical logic, if it actually implies a contradiction. This means we must take an interest in relevance logics.
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
In relevance logic, conditionals help information to flow from antecedent to consequent [Fisher]
     Full Idea: A good account of relevance logic suggests that a conditional will be true when the flow of information is such that a conditional is the device that helps information to flow from the antecedent to the consequent.
     From: Jennifer Fisher (On the Philosophy of Logic [2008], 08.III)
     A reaction: Hm. 'If you are going out, you'll need an umbrella'. This passes on information about 'out', but also brings in new information. 'If you are going out, I'm leaving you'. What flows is an interpretation of the antecedent. Tricky.
25. Social Practice / F. Life Issues / 6. Animal Rights
Animals are dangerous and nourishing, and can't form contracts of justice [Hermarchus, by Sedley]
     Full Idea: Hermarchus said that animal killing is justified by considerations of human safety and nourishment and by animals' inability to form contractual relations of justice with us.
     From: report of Hermarchus (fragments/reports [c.270 BCE]) by David A. Sedley - Hermarchus
     A reaction: Could the last argument be used to justify torturing animals? Or could we eat a human who was too brain-damaged to form contracts?