Combining Philosophers

All the ideas for Hermarchus, Michael Potter and Ernst Zermelo

unexpand these ideas     |    start again     |     specify just one area for these philosophers


53 ideas

2. Reason / D. Definition / 8. Impredicative Definition
Predicative definitions are acceptable in mathematics if they distinguish objects, rather than creating them? [Zermelo, by Lavine]
     Full Idea: On Zermelo's view, predicative definitions are not only indispensable to mathematics, but they are unobjectionable since they do not create the objects they define, but merely distinguish them from other objects.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Shaughan Lavine - Understanding the Infinite V.1
     A reaction: This seems to have an underlying platonism, that there are hitherto undefined 'objects' lying around awaiting the honour of being defined. Hm.
Impredicative definitions are circular, but fine for picking out, rather than creating something [Potter]
     Full Idea: The circularity in a definition where the property being defined is used in the definition is now known as 'impredicativity'. ...Some cases ('the tallest man in the room') are unproblematic, as they pick him out, and don't conjure him into existence.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 07 'Impred')
     A reaction: [part summary]
3. Truth / A. Truth Problems / 2. Defining Truth
The Identity Theory says a proposition is true if it coincides with what makes it true [Potter]
     Full Idea: The Identity Theory of truth says a proposition is true just in case it coincides with what makes it true.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 23 'Abs')
     A reaction: The obvious question is how 'there are trees in the wood' can somehow 'coincide with' or 'be identical to' the situation outside my window. The theory is sort of right, but we will never define the relationship, which is no better than 'corresponds'.
3. Truth / C. Correspondence Truth / 1. Correspondence Truth
It has been unfortunate that externalism about truth is equated with correspondence [Potter]
     Full Idea: There has been an unfortunate tendency in the secondary literature to equate externalism about truth with the correspondence theory.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 65 'Truth')
     A reaction: Quite helpful to distinguish internalist from externalist theories of truth. It is certainly the case that robust externalist views of truth have unfortunately been discredited merely because the correspondence account is inadequate.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
We take set theory as given, and retain everything valuable, while avoiding contradictions [Zermelo]
     Full Idea: Starting from set theory as it is historically given ...we must, on the one hand, restrict these principles sufficiently to exclude as contradiction and, on the other, take them sufficiently wide to retain all that is valuable in this theory.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: Maddy calls this the one-step-back-from-disaster rule of thumb. Zermelo explicitly mentions the 'Russell antinomy' that blocked Frege's approach to sets.
Set theory investigates number, order and function, showing logical foundations for mathematics [Zermelo]
     Full Idea: Set theory is that branch whose task is to investigate mathematically the fundamental notions 'number', 'order', and 'function', taking them in their pristine, simple form, and to develop thereby the logical foundations of all of arithmetic and analysis.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: At this point Zermelo seems to be a logicist. Right from the start set theory was meant to be foundational to mathematics, and not just a study of the logic of collections.
Set theory's three roles: taming the infinite, subject-matter of mathematics, and modes of reasoning [Potter]
     Full Idea: Set theory has three roles: as a means of taming the infinite, as a supplier of the subject-matter of mathematics, and as a source of its modes of reasoning.
     From: Michael Potter (Set Theory and Its Philosophy [2004], Intro 1)
     A reaction: These all seem to be connected with mathematics, but there is also ontological interest in set theory. Potter emphasises that his second role does not entail a commitment to sets 'being' numbers.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Usually the only reason given for accepting the empty set is convenience [Potter]
     Full Idea: It is rare to find any direct reason given for believing that the empty set exists, except for variants of Dedekind's argument from convenience.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 04.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
ZFC: Existence, Extension, Specification, Pairing, Unions, Powers, Infinity, Choice [Zermelo, by Clegg]
     Full Idea: Zermelo-Fraenkel axioms: Existence (at least one set); Extension (same elements, same set); Specification (a condition creates a new set); Pairing (two sets make a set); Unions; Powers (all subsets make a set); Infinity (set of successors); Choice
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
Zermelo published his axioms in 1908, to secure a controversial proof [Zermelo, by Maddy]
     Full Idea: Zermelo proposed his listed of assumptions (including the controversial Axiom of Choice) in 1908, in order to secure his controversial proof of Cantor's claim that ' we can always bring any well-defined set into the form of a well-ordered set'.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1
     A reaction: This is interesting because it sometimes looks as if axiom systems are just a way of tidying things up. Presumably it is essential to get people to accept the axioms in their own right, the 'old-fashioned' approach that they be self-evident.
Set theory can be reduced to a few definitions and seven independent axioms [Zermelo]
     Full Idea: I intend to show how the entire theory created by Cantor and Dedekind can be reduced to a few definitions and seven principles, or axioms, which appear to be mutually independent.
     From: Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908], Intro)
     A reaction: The number of axioms crept up to nine or ten in subsequent years. The point of axioms is maximum reduction and independence from one another. He says nothing about self-evidence (though Boolos claimed a degree of that).
Zermelo made 'set' and 'member' undefined axioms [Zermelo, by Chihara]
     Full Idea: The terms 'set' and 'is a member of' are primitives of Zermelo's 1908 axiomatization of set theory. They are not given model-theoretic analyses or definitions.
     From: report of Ernst Zermelo (works [1920]) by Charles Chihara - A Structural Account of Mathematics 7.5
     A reaction: This looks like good practice if you want to work with sets, but not so hot if you are interested in metaphysics.
For Zermelo's set theory the empty set is zero and the successor of each number is its unit set [Zermelo, by Blackburn]
     Full Idea: For Zermelo's set theory the empty set is zero and the successor of each number is its unit set.
     From: report of Ernst Zermelo (works [1920]) by Simon Blackburn - Oxford Dictionary of Philosophy p.280
Zermelo showed that the ZF axioms in 1930 were non-categorical [Zermelo, by Hallett,M]
     Full Idea: Zermelo's paper sets out to show that the standard set-theoretic axioms (what he calls the 'constitutive axioms', thus the ZF axioms minus the axiom of infinity) have an unending sequence of different models, thus that they are non-categorical.
     From: report of Ernst Zermelo (On boundary numbers and domains of sets [1930]) by Michael Hallett - Introduction to Zermelo's 1930 paper p.1209
     A reaction: Hallett says later that Zermelo is working with second-order set theory. The addition of an Axiom of Infinity seems to have aimed at addressing the problem, and the complexities of that were pursued by Gödel.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Zermelo introduced Pairing in 1930, and it seems fairly obvious [Zermelo, by Maddy]
     Full Idea: Zermelo's Pairing Axiom superseded (in 1930) his original 1908 Axiom of Elementary Sets. Like Union, its only justification seems to rest on 'limitations of size' and on the 'iterative conception'.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.3
     A reaction: Maddy says of this and Union, that they seem fairly obvious, but that their justification is of prime importance, if we are to understand what the axioms should be.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There is at least one limit level [Potter]
     Full Idea: Axiom of Infinity: There is at least one limit level.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 04.9)
     A reaction: A 'limit ordinal' is one which has successors, but no predecessors. The axiom just says there is at least one infinity.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was added when some advanced theorems seemed to need it [Zermelo, by Maddy]
     Full Idea: Zermelo included Replacement in 1930, after it was noticed that the sequence of power sets was needed, and Replacement gave the ordinal form of the well-ordering theorem, and justification for transfinite recursion.
     From: report of Ernst Zermelo (On boundary numbers and domains of sets [1930]) by Penelope Maddy - Believing the Axioms I §1.8
     A reaction: Maddy says that this axiom suits the 'limitation of size' theorists very well, but is not so good for the 'iterative conception'.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Zermelo used Foundation to block paradox, but then decided that only Separation was needed [Zermelo, by Maddy]
     Full Idea: Zermelo used a weak form of the Axiom of Foundation to block Russell's paradox in 1906, but in 1908 felt that the form of his Separation Axiom was enough by itself, and left the earlier axiom off his published list.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.2
     A reaction: Foundation turns out to be fairly controversial. Barwise actually proposes Anti-Foundation as an axiom. Foundation seems to be the rock upon which the iterative view of sets is built. Foundation blocks infinite descending chains of sets, and circularity.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / m. Axiom of Separation
Not every predicate has an extension, but Separation picks the members that satisfy a predicate [Zermelo, by Hart,WD]
     Full Idea: Zermelo assumes that not every predicate has an extension but rather that given a set we may separate out from it those of its members satisfying the predicate. This is called 'separation' (Aussonderung).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by William D. Hart - The Evolution of Logic 3
The Axiom of Separation requires set generation up to one step back from contradiction [Zermelo, by Maddy]
     Full Idea: The most characteristic Zermelo axiom is Separation, guided by a new rule of thumb: 'one step back from disaster' - principles of set generation should be as strong as possible short of contradiction.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.4
     A reaction: Why is there an underlying assumption that we must have as many sets as possible? We are then tempted to abolish axioms like Foundation, so that we can have even more sets!
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
Nowadays we derive our conception of collections from the dependence between them [Potter]
     Full Idea: It is only quite recently that the idea has emerged of deriving our conception of collections from a relation of dependence between them.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 03.2)
     A reaction: This is the 'iterative' view of sets, which he traces back to Gödel's 'What is Cantor's Continuum Problem?'
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
The 'limitation of size' principles say whether properties collectivise depends on the number of objects [Potter]
     Full Idea: We group under the heading 'limitation of size' those principles which classify properties as collectivizing or not according to how many objects there are with the property.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 13.5)
     A reaction: The idea was floated by Cantor, toyed with by Russell (1906), and advocated by von Neumann. The thought is simply that paradoxes start to appear when sets become enormous.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology elides the distinction between the cards in a pack and the suits [Potter]
     Full Idea: Mereology tends to elide the distinction between the cards in a pack and the suits.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 02.1)
     A reaction: The example is a favourite of Frege's. Potter is giving a reason why mathematicians opted for set theory. I'm not clear, though, why a pack cannot have either 4 parts or 52 parts. Parts can 'fall under a concept' (such as 'legs'). I'm puzzled.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
We can formalize second-order formation rules, but not inference rules [Potter]
     Full Idea: In second-order logic only the formation rules are completely formalizable, not the inference rules.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 01.2)
     A reaction: He cites Gödel's First Incompleteness theorem for this.
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Frege's sign |--- meant judgements, but the modern |- turnstile means inference, with intecedents [Potter]
     Full Idea: Natural deduction systems generally depend on conditional proof, but for Frege everything is asserted unconditionally. The modern turnstile |- is allowed to have antecedents, and hence to represent inference rather than Frege's judgement sign |---.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 03 'Axioms')
     A reaction: [compressed] Shockingly, Frege's approach seems more psychological than the modern approach. I would say that the whole point of logic is that it has to be conditional, because the truth of the antecedents is irrelevant.
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Deductivism can't explain how the world supports unconditional conclusions [Potter]
     Full Idea: Deductivism is a good account of large parts of mathematics, but stumbles where mathematics is directly applicable to the world. It fails to explain how we detach the antecedent so as to arrive at unconditional conclusions.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 12 'Deduc')
     A reaction: I suppose the reply would be that we have designed deductive structures which fit our understanding of reality - so it is all deductive, but selected pragmatically.
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
Supposing axioms (rather than accepting them) give truths, but they are conditional [Potter]
     Full Idea: A 'supposition' axiomatic theory is as concerned with truth as a 'realist' one (with undefined terms), but the truths are conditional. Satisfying the axioms is satisfying the theorem. This is if-thenism, or implicationism, or eliminative structuralism.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 01.1)
     A reaction: Aha! I had failed to make the connection between if-thenism and eliminative structuralism (of which I am rather fond). I think I am an if-thenist (not about all truth, but about provable truth).
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Modern logical truths are true under all interpretations of the non-logical words [Potter]
     Full Idea: In the modern definition, a 'logical truth' is true under every interpretation of the non-logical words it contains.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 19 'Frege's')
     A reaction: What if the non-logical words are nonsense, or are used inconsistently ('good'), or ambiguously ('bank'), or vaguely ('bald'), or with unsure reference ('the greatest philosopher' becomes 'Bentham')? What qualifies as an 'interpretation'?
5. Theory of Logic / L. Paradox / 3. Antinomies
The antinomy of endless advance and of completion is resolved in well-ordered transfinite numbers [Zermelo]
     Full Idea: Two opposite tendencies of thought, the idea of creative advance and of collection and completion (underlying the Kantian 'antinomies') find their symbolic representation and their symbolic reconciliation in the transfinite numbers based on well-ordering.
     From: Ernst Zermelo (On boundary numbers and domains of sets [1930], §5)
     A reaction: [a bit compressed] It is this sort of idea, from one of the greatest set-theorists, that leads philosophers to think that the philosophy of mathematics may offer solutions to metaphysical problems. As an outsider, I am sceptical.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
In ZF, the Burali-Forti Paradox proves that there is no set of all ordinals [Zermelo, by Hart,WD]
     Full Idea: In Zermelo's set theory, the Burali-Forti Paradox becomes a proof that there is no set of all ordinals (so 'is an ordinal' has no extension).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by William D. Hart - The Evolution of Logic 3
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
If set theory didn't found mathematics, it is still needed to count infinite sets [Potter]
     Full Idea: Even if set theory's role as a foundation for mathematics turned out to be wholly illusory, it would earn its keep through the calculus it provides for counting infinite sets.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 03.8)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / e. Countable infinity
Zermelo realised that Choice would facilitate the sort of 'counting' Cantor needed [Zermelo, by Lavine]
     Full Idea: Zermelo realised that the Axiom of Choice (based on arbitrary functions) could be used to 'count', in the Cantorian sense, those collections that had given Cantor so much trouble, which restored a certain unity to set theory.
     From: report of Ernst Zermelo (Proof that every set can be well-ordered [1904]) by Shaughan Lavine - Understanding the Infinite I
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
It is remarkable that all natural number arithmetic derives from just the Peano Axioms [Potter]
     Full Idea: It is a remarkable fact that all the arithmetical properties of the natural numbers can be derived from such a small number of assumptions (as the Peano Axioms).
     From: Michael Potter (Set Theory and Its Philosophy [2004], 05.2)
     A reaction: If one were to defend essentialism about arithmetic, this would be grist to their mill. I'm just saying.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / f. Zermelo numbers
For Zermelo the successor of n is {n} (rather than n U {n}) [Zermelo, by Maddy]
     Full Idea: For Zermelo the successor of n is {n} (rather than Von Neumann's successor, which is n U {n}).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Naturalism in Mathematics I.2 n8
     A reaction: I could ask some naive questions about the comparison of these two, but I am too shy about revealing my ignorance.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Zermelo believed, and Von Neumann seemed to confirm, that numbers are sets [Zermelo, by Maddy]
     Full Idea: Zermelo was a reductionist, and believed that theorems purportedly about numbers (cardinal or ordinal) are really about sets, and since Von Neumann's definitions of ordinals and cardinals as sets, this has become common doctrine.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by Penelope Maddy - Believing the Axioms I §1.8
     A reaction: Frege has a more sophisticated take on this approach. It may just be an updating of the Greek idea that arithmetic is about treating many things as a unit. A set bestows an identity on a group, and that is all that is needed.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Different versions of set theory result in different underlying structures for numbers [Zermelo, by Brown,JR]
     Full Idea: In Zermelo's set-theoretic definition of number, 2 is a member of 3, but not a member of 4; in Von Neumann's definition every number is a member of every larger number. This means they have two different structures.
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by James Robert Brown - Philosophy of Mathematics Ch. 4
     A reaction: This refers back to the dilemma highlighted by Benacerraf, which was supposed to be the motivation for structuralism. My intuition says that the best answer is that they are both wrong. In a pattern, the nodes aren't 'members' of one another.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
The formalist defence against Gödel is to reject his metalinguistic concept of truth [Potter]
     Full Idea: Gödel's theorem does not refute formalism outright, because the committed formalist need not recognise the metalinguistic notion of truth to which the theorem appeals.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 45 'Log')
     A reaction: The theorem was prior to Tarski's account of truth. Potter says Gödel avoided explicit mention of truth because of this problem. In general Gödel showed that there are truths outside the formal system (which is all provable).
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Why is fictional arithmetic applicable to the real world? [Potter]
     Full Idea: Fictionalists struggle to explain why arithmetic is applicable to the real world in a way that other stories are not.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 21 'Math')
     A reaction: We know why some novels are realistic and others just the opposite. If a novel aimed to 'model' the real world it would be even closer to it. Fictionalists must explain why some fictions are useful.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
If 'concrete' is the negative of 'abstract', that means desires and hallucinations are concrete [Potter]
     Full Idea: The word 'concrete' is often used as the negative of 'abstract', with the slightly odd consequence that desires and hallucinations are thereby classified as concrete.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 12 'Numb')
     A reaction: There is also the even more baffling usage of 'abstract' for the most highly generalised mathematics, leaving lower levels as 'concrete'. I favour the use of 'generalised' wherever possible, rather than 'abstract'.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is a set consisting entirely of ordered pairs [Potter]
     Full Idea: A set is called a 'relation' if every element of it is an ordered pair.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 04.7)
     A reaction: This is the modern extensional view of relations. For 'to the left of', you just list all the things that are to the left, with the things they are to the left of. But just listing the ordered pairs won't necessarily reveal how they are related.
8. Modes of Existence / A. Relations / 4. Formal Relations / c. Ancestral relation
'Greater than', which is the ancestral of 'successor', strictly orders the natural numbers [Potter]
     Full Idea: From the successor function we can deduce its ancestral, the 'greater than' relation, which is a strict total ordering of the natural numbers. (Frege did not mention this, but Dedekind worked it out, when expounding definition by recursion).
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 07 'Def')
     A reaction: [compressed]
9. Objects / B. Unity of Objects / 2. Substance / b. Need for substance
If dependence is well-founded, with no infinite backward chains, this implies substances [Potter]
     Full Idea: The argument that the relation of dependence is well-founded ...is a version of the classical arguments for substance. ..Any conceptual scheme which genuinely represents a world cannot contain infinite backward chains of meaning.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 03.3)
     A reaction: Thus the iterative conception of set may imply a notion of substance, and Barwise's radical attempt to ditch the Axiom of Foundation (Idea 13039) was a radical attempt to get rid of 'substances'. Potter cites Wittgenstein as a fan of substances here.
9. Objects / C. Structure of Objects / 8. Parts of Objects / b. Sums of parts
Collections have fixed members, but fusions can be carved in innumerable ways [Potter]
     Full Idea: A collection has a determinate number of members, whereas a fusion may be carved up into parts in various equally valid (although perhaps not equally interesting) ways.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 02.1)
     A reaction: This seems to sum up both the attraction and the weakness of mereology. If you doubt the natural identity of so-called 'objects', then maybe classical mereology is the way to go.
10. Modality / A. Necessity / 1. Types of Modality
Priority is a modality, arising from collections and members [Potter]
     Full Idea: We must conclude that priority is a modality distinct from that of time or necessity, a modality arising in some way out of the manner in which a collection is constituted from its members.
     From: Michael Potter (Set Theory and Its Philosophy [2004], 03.3)
     A reaction: He is referring to the 'iterative' view of sets, and cites Aristotle 'Metaphysics' 1019a1-4 as background.
10. Modality / B. Possibility / 8. Conditionals / c. Truth-function conditionals
A material conditional cannot capture counterfactual reasoning [Potter]
     Full Idea: What the material conditional most significantly fails to capture is counterfactual reasoning.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 04 'Sem')
     A reaction: The point is that counterfactuals say 'if P were the case (which it isn't), then Q'. But that means P is false, and in the material conditional everything follows from a falsehood. A reinterpretation of the conditional might embrace counterfactuals.
13. Knowledge Criteria / C. External Justification / 3. Reliabilism / b. Anti-reliabilism
Knowledge from a drunken schoolteacher is from a reliable and unreliable process [Potter]
     Full Idea: Knowledge might result from a reliable and an unreliable process. ...Is something knowledge if you were told it by a drunken schoolteacher?
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 66 'Rel')
     A reaction: Nice example. The listener must decide which process to rely on. But how do you decide that, if not by assessing the likely truth of what you are being told? It could be a bad teacher who is inspired by drink.
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
We should judge principles by the science, not science by some fixed principles [Zermelo]
     Full Idea: Principles must be judged from the point of view of science, and not science from the point of view of principles fixed once and for all. Geometry existed before Euclid's 'Elements', just as arithmetic and set theory did before Peano's 'Formulaire'.
     From: Ernst Zermelo (New Proof of Possibility of Well-Ordering [1908], §2a)
     A reaction: This shows why the axiomatisation of set theory is an ongoing and much-debated activity.
Traditionally there are twelve categories of judgement, in groups of three [Potter]
     Full Idea: The traditional categorisation of judgements (until at least 1800) was as universal, particular or singular; as affirmative, negative or infinite; as categorical, hypothetical or disjunctive; or as problematic, assertoric or apodictic.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 02 'Trans')
     A reaction: Arranging these things in neat groups of three seems to originate with the stoics. Making distinctions like this is very much the job of a philosopher, but arranging them in neat equinumerous groups is intellectual tyranny.
18. Thought / D. Concepts / 3. Ontology of Concepts / c. Fregean concepts
The phrase 'the concept "horse"' can't refer to a concept, because it is saturated [Potter]
     Full Idea: Frege's mirroring principle (that the structure of thoughts mirrors that of language) has the uncomfortable consequence that since the phrase 'the concept "horse"' is saturated, it cannot refer to something unsaturated, which includes concepts.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 16 'Conc')
19. Language / C. Assigning Meanings / 4. Compositionality
Compositionality should rely on the parsing tree, which may contain more than sentence components [Potter]
     Full Idea: Compositionality is best seen as saying the semantic value of a string is explained by the strings lower down its parsing tree. It is unimportant whether a string is always parsed in terms of its own substrings.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 05 'Sem')
     A reaction: That is, the analysis must explain the meaning, but the analysis can contain more than the actual ingredients of the sentence (which would be too strict).
'Direct compositonality' says the components wholly explain a sentence meaning [Potter]
     Full Idea: Some authors urge the strong notion of 'direct compositionality', which requires that the content of a sentence be explained in terms of the contents of the component parts of that very sentence.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 05 'Sem')
     A reaction: The alternative is that meaning is fully explained by an analysis, but that may contain more than the actual components of the sentence.
Compositionality is more welcome in logic than in linguistics (which is more contextual) [Potter]
     Full Idea: The principle of compositionality is more popular among philosophers of logic than of language, because the subtle context-sensitivity or ordinary language makes providing a compositional semantics for it a daunting challenge.
     From: Michael Potter (The Rise of Analytic Philosophy 1879-1930 [2020], 21 'Lang')
     A reaction: Logicians love breaking complex entities down into simple atomic parts. Linguistics tries to pin down something much more elusive.
25. Social Practice / F. Life Issues / 6. Animal Rights
Animals are dangerous and nourishing, and can't form contracts of justice [Hermarchus, by Sedley]
     Full Idea: Hermarchus said that animal killing is justified by considerations of human safety and nourishment and by animals' inability to form contractual relations of justice with us.
     From: report of Hermarchus (fragments/reports [c.270 BCE]) by David A. Sedley - Hermarchus
     A reaction: Could the last argument be used to justify torturing animals? Or could we eat a human who was too brain-damaged to form contracts?