Combining Philosophers

All the ideas for Herodotus, C. Anthony Anderson and Isaac Newton

unexpand these ideas     |    start again     |     specify just one area for these philosophers


60 ideas

1. Philosophy / D. Nature of Philosophy / 1. Philosophy
Philosophy must abstract from the senses [Newton]
     Full Idea: In philosophy abstraction from the senses is required.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
     A reaction: He particularly means 'natural philosophy' (i.e. science), but there is no real distinction in Newton's time, and I would say this remark is true of modern philosophy.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logics has terms that do not designate real things, and even empty domains [Anderson,CA]
     Full Idea: Free logics say 1) singular terms are allowed that do not designate anything that exists; sometimes 2) is added: the domain of discourse is allowed to be empty. Logics with both conditions are called 'universally free logics'.
     From: C. Anthony Anderson (Identity and Existence in Logic [2014], 2.3)
     A reaction: I really like the sound of this, and aim to investigate it. Karel Lambert's writings are the starting point. Maybe the domain of logic is our concepts, rather than things in the world, in which case free logic sounds fine.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Basic variables in second-order logic are taken to range over subsets of the individuals [Anderson,CA]
     Full Idea: Under its now standard principal interpretation, the monadic predicate variables in second-order logic range over subsets of the domain on individuals.
     From: C. Anthony Anderson (Identity and Existence in Logic [2014], 1.5)
     A reaction: This is an interpretation in which properties are just sets of things, which is fine if you are a logician, but not if you want to talk about anything important. Still, we must play the game. Boolos introduced plural quantification at this point.
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Stop calling ∃ the 'existential' quantifier, read it as 'there is...', and range over all entities [Anderson,CA]
     Full Idea: Ontological quantifiers might just as well range over all the entities needed for the semantics. ...The minimal way would be to just stop calling '∃' an 'existential quantifier', and always read it as 'there is...' rather than 'there exists...'.
     From: C. Anthony Anderson (Identity and Existence in Logic [2014], 2.6)
     A reaction: There is no right answer here, but it seems to be the strategy adopted by most logicians, and the majority of modern metaphysicians. They just allow abstracta, and even fictions, to 'exist', while not being fussy what it means. Big mistake!
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Newton developed a kinematic approach to geometry [Newton, by Kitcher]
     Full Idea: The reduction of the problems of tangents, normals, curvature, maxima and minima were effected by Newton's kinematic approach to geometry.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Philip Kitcher - The Nature of Mathematical Knowledge 10.1
     A reaction: This approach apparently contrasts with that of Leibniz.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
We can talk of 'innumerable number', about the infinite points on a line [Newton]
     Full Idea: If any man shall take the words number and sum in a larger sense, to understand things which are numberless and sumless (such as the infinite points on a line), I could allow him the contradictious phrase 'innumerable number' without absurdity.
     From: Isaac Newton (Letters to Bentley [1692], 1693.02.25)
     A reaction: [compressed] I take the key point here to be the phrase of taking number 'in a larger sense'. Like the word 'atom' in physics, the word 'number' retains its traditional reference, but has considerably shifted its scope. Amateurs must live with this.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Not all infinites are equal [Newton]
     Full Idea: It is an error that all infinites are equal.
     From: Isaac Newton (Letters to Bentley [1692], 1693.01.17)
     A reaction: There follows a discussion of the mathematicians' view of infinity. Cantor was not the first to notice that there is more than one sort of of infinity.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Quantities and ratios which continually converge will eventually become equal [Newton]
     Full Idea: Quantities and the ratios of quantities, which in any finite time converge continually to equality, and, before the end of that time approach nearer to one another by any given difference become ultimately equal.
     From: Isaac Newton (Principia Mathematica [1687], Lemma 1), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.2
     A reaction: Kitcher observes that, although Newton relies on infinitesimals, this quotation expresses something close to the later idea of a 'limit'.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
A number is not a multitude, but a unified ratio between quantities [Newton]
     Full Idea: By a Number we understand not so much a Multitude of Unities, as the abstracted Ratio of any Quantity to another Quantity of the same Kind, which we take for unity.
     From: Isaac Newton (Universal Arithmetick [1669]), quoted by John Mayberry - What Required for Foundation for Maths? p.407-2
     A reaction: This needs a metaphysics of 'kinds' (since lines can't have ratios with solids). Presumably Newton wants the real numbers to be more basic than the natural numbers. This is the transition from Greek to modern.
7. Existence / A. Nature of Existence / 2. Types of Existence
Do mathematicians use 'existence' differently when they say some entity exists? [Anderson,CA]
     Full Idea: A cursory examination shows that mathematicians have no aversion to saying that this-or-that mathematical entity exists. But is this a different sense of 'existence'?
     From: C. Anthony Anderson (Identity and Existence in Logic [2014], 2.6)
     A reaction: For those of us like me and my pal Quine who say that 'exist' is univocal (i.e. only one meaning), this is a nice challenge. Quine solves it by saying maths concerns sets of objects. I, who don't like sets, am puzzled (so I turn to fictionalism...).
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We can distinguish 'ontological' from 'existential' commitment, for different kinds of being [Anderson,CA]
     Full Idea: There are sensible ways to maike a distinction between different kinds of being. ..One need not fear that this leads to a 'bloated ontology'. ...We need only distinguish 'ontological commitment' from 'existential commitment'
     From: C. Anthony Anderson (Identity and Existence in Logic [2014], 2.6)
     A reaction: He speaks of giving fictional and abstract entities a 'lower score' in existence. I think he means the 'ontological' commitment to be the stronger of the two.
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
I suspect that each particle of bodies has attractive or repelling forces [Newton]
     Full Idea: Many things lead me to a suspicion that all phenomena may depend on certain forces by which the particles of bodies, by causes not yet known, either are impelled toward one another and cohere in regular figures,or are repelled from one another and recede.
     From: Isaac Newton (Principia Mathematica [1687], Pref)
     A reaction: For Newton, forces are not just abstractions that are convenient for mathematics, but realities which I would say are best described as 'powers'.
9. Objects / A. Existence of Objects / 4. Impossible objects
's is non-existent' cannot be said if 's' does not designate [Anderson,CA]
     Full Idea: The paradox of negative existentials says that if 's' does not designate something, then the sentence 's is non-existent' is untrue.
     From: C. Anthony Anderson (Identity and Existence in Logic [2014], 2.1)
     A reaction: This only seems be a problem for logicians. Everyone else can happily say 'my coffee is non-existent'.
We cannot pick out a thing and deny its existence, but we can say a concept doesn't correspond [Anderson,CA]
     Full Idea: Parmenides was correct - one cannot speak of that which is not, even to say that it is not. But one can speak of concepts and say of them that they do not correspond to anything real.
     From: C. Anthony Anderson (Identity and Existence in Logic [2014], 2.5)
     A reaction: [This summarises Alonso Church, who was developing Frege] This sounds like the right thing to say about non-existence, but then the same principle must apply to assertions of existence, which will also be about concepts and not things.
9. Objects / A. Existence of Objects / 5. Individuation / a. Individuation
Individuation was a problem for medievals, then Leibniz, then Frege, then Wittgenstein (somewhat) [Anderson,CA]
     Full Idea: The medieval philosophers and then Leibniz were keen on finding 'principles of individuation', and the idea appears again in Frege, to be taken up in some respects by Wittgenstein.
     From: C. Anthony Anderson (Identity and Existence in Logic [2014], 1.6)
     A reaction: I take a rather empirical approach to this supposed problem, and suggest we break 'individuation' down into its component parts, and then just drop the word. Discussions of principles of individuations strike me as muddled. Wiggins and Lowe today.
9. Objects / B. Unity of Objects / 1. Unifying an Object / b. Unifying aggregates
Particles mutually attract, and cohere at short distances [Newton]
     Full Idea: The particles of bodies attract one another at very small distances and cohere when they become contiguous.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
     A reaction: This is the sort of account of unity which has to be given in the corpuscular view of things, once substantial forms are given up. What is missing here is the structure of the thing. A lump of dirt is as unified as a cat in this story.
9. Objects / C. Structure of Objects / 8. Parts of Objects / b. Sums of parts
The place of a thing is the sum of the places of its parts [Newton]
     Full Idea: The place of a whole is the same as the sum of the places of the parts, and is therefore internal and in the whole body.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
     A reaction: Note that Newton is talking of the sums of places, and deriving them from the parts. This is the mereology of space.
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The notion of 'property' is unclear for a logical version of the Identity of Indiscernibles [Anderson,CA]
     Full Idea: In the Identity of Indiscernibles, one speaks about properties, and the notion of a property is by no means clearly fixed and formalized in modern symbolic logic.
     From: C. Anthony Anderson (Identity and Existence in Logic [2014], 1.5)
     A reaction: The unclarity of 'property' is a bee in my philosophical bonnet, in speech, and in metaphysics, as well as in logic. It may well be the central problem in our attempts to understand the world in general terms. He cites intensional logic as promising.
14. Science / B. Scientific Theories / 6. Theory Holism
If you changed one of Newton's concepts you would destroy his whole system [Heisenberg on Newton]
     Full Idea: The connection between the different concept in [Newton's] system is so close that one could generally not change any one of the concepts without destroying the whole system
     From: comment on Isaac Newton (Principia Mathematica [1687]) by Werner Heisenberg - Physics and Philosophy 06
     A reaction: This holistic situation would seem to count against Newton's system, rather than for it. A good system should depend on nature, not on other parts of the system. Compare changing a rule of chess.
14. Science / C. Induction / 1. Induction
Science deduces propositions from phenomena, and generalises them by induction [Newton]
     Full Idea: In experimental philosophy, propositions are deduced from the phenomena and are made general by induction.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
     A reaction: Sounds easy, but generalising by induction requires all sorts of assumptions about the stability of natural kinds. Since the kinds are only arrived at by induction, it is not easy to give a proper account here.
14. Science / D. Explanation / 2. Types of Explanation / g. Causal explanations
We should admit only enough causes to explain a phenomenon, and no more [Newton]
     Full Idea: No more causes of natural things should be admitted than are both true and sufficient to explain the phenomena. …For nature does nothing in vain, …and nature is simple and does not indulge in the luxury of superfluous causes.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Rule 1)
     A reaction: This emphasises that Ockham's Razor is a rule for physical explanation, and not just one for abstract theories. This is something like Van Fraassen's 'empirical adequacy'.
Natural effects of the same kind should be assumed to have the same causes [Newton]
     Full Idea: The causes assigned to natural effects of the same kind must be, so far as possible, the same. For example, the cause of respiration in man and beast.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Rule 2)
     A reaction: It is impossible to rule out identical effects from differing causes, but explanation gets much more exciting (because wide-ranging) if Newton's rule is assumed.
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
From the phenomena, I can't deduce the reason for the properties of gravity [Newton]
     Full Idea: I have not as yet been able to deduce from the phenomena the reason for the properties of gravity.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
     A reaction: I take it that giving the reasons for the properties of gravity would be an essentialist explanation. I am struck by the fact that the recent discovery of the Higgs Boson appears to give us a reason why things have mass (i.e. what causes mass).
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / c. Ultimate substances
Newton's four fundamentals are: space, time, matter and force [Newton, by Russell]
     Full Idea: Newton works with four fundamental concepts: space, time, matter and force.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Bertrand Russell - My Philosophical Development Ch.2
     A reaction: The ontological challenge is to reduce these in number, presumably. They are, notoriously, defined in terms of one another.
26. Natural Theory / A. Speculations on Nature / 7. Later Matter Theories / a. Early Modern matter
Mass is central to matter [Newton, by Hart,WD]
     Full Idea: For Newton, mass is central to matter.
     From: report of Isaac Newton (Principia Mathematica [1687]) by William D. Hart - The Evolution of Logic 2
     A reaction: On reading this, I realise that this is the concept of matter I have grown up with, one which makes it very hard to grasp what the Greeks were thinking of when they referred to matter [hule].
26. Natural Theory / A. Speculations on Nature / 7. Later Matter Theories / b. Corpuscles
An attraction of a body is the sum of the forces of their particles [Newton]
     Full Idea: The attractions of the bodies must be reckoned by assigning proper forces to their individual particles and then taking the sums of those forces.
     From: Isaac Newton (Principia Mathematica [1687], 1.II.Schol)
     A reaction: This is using the parts of bodies to give fundamental explanations, rather than invoking substantial forms. The parts need not be atoms.
26. Natural Theory / C. Causation / 1. Causation
Newtonian causation is changes of motion resulting from collisions [Newton, by Baron/Miller]
     Full Idea: In the Newtonian mechanistic theory of causation, ….something causes a result when it brings about a change of motion. …Causation is a matter of things bumping into one another.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Baron,S/Miller,K - Intro to the Philosophy of Time 6.2.1
     A reaction: This seems to need impenetrability and elasticity as primitives (which is partly what Leibniz's monads are meant to explain). The authors observe that much causation is the result of existences and qualities, rather than motions.
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
The principles of my treatise are designed to fit with a belief in God [Newton]
     Full Idea: When I wrote my treatise about our system, I had an eye upon such principles as might work with considering men, for the belief of a deity.
     From: Isaac Newton (Letters to Bentley [1692], 1692.12.10)
     A reaction: Harré quotes this, and it shows that the rather passive view of nature Newton developed was to be supplemented by the active power of God. Without God, we need a more active view of nature.
Principles of things are not hidden features of forms, but the laws by which they were formed [Newton]
     Full Idea: The (active) principles I consider not as occult qualities, supposed to result from the specific forms of things, but as general laws of nature, by which the things themselves are formed.
     From: Isaac Newton (Queries to the 'Opticks' [1721], q 31), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 23.6
     A reaction: This is the external, 'imposed' view of laws (with the matter passive) at its most persuasive. If laws arise out the stuff (as I prefer to think), what principles went into the formulation of the stuff?
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
I do not pretend to know the cause of gravity [Newton]
     Full Idea: You sometimes speak of gravity as essential and inherent in matter. Pray do no ascribe that notion to me; for the cause of gravity is what I do not pretend to know.
     From: Isaac Newton (Letters to Bentley [1692], 1693.01.17)
     A reaction: I take science to be a two-stage operation - first we discern the regularities, and then we explain them. Evolution was spotted, then explained by Darwin. Cancer from cigarettes was spotted, but hasn't been explained. Regularity is the beginning.
26. Natural Theory / D. Laws of Nature / 6. Laws as Numerical
You have discovered that elliptical orbits result just from gravitation and planetary movement [Newton, by Leibniz]
     Full Idea: You have made the astonishing discovery that Kepler's ellipses result simply from the conception of attraction or gravitation and passage in a planet.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Gottfried Leibniz - Letter to Newton 1693.03.07
     A reaction: I quote this to show that Newton made 'an astonishing discovery' of a connection in nature, and did not merely produce an equation which described a pattern of behaviour. The simple equation is the proof of the connection.
We have given up substantial forms, and now aim for mathematical laws [Newton]
     Full Idea: The moderns - rejecting substantial forms and occult qualities - have undertaken to reduce the phenomena of nature to mathematical laws.
     From: Isaac Newton (Principia Mathematica [1687], Preface)
     A reaction: This is the simplest statement of the apparent anti-Aristotelian revolution in the seventeenth century.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / c. Essence and laws
I am not saying gravity is essential to bodies [Newton]
     Full Idea: I am by no means asserting that gravity is essential to bodies.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Rule 3)
     A reaction: Notice that in Idea 17009 he does not rule out gravity being essential to bodies. This is Newton's intellectual modesty (for which he is not famous).
I won't object if someone shows that gravity consistently arises from the action of matter [Newton]
     Full Idea: If someone explains gravity along with all its laws by the action of some subtle matter, and shows that the motion of the planets and comets will not be disturbed by this matter, I shall be far from objecting.
     From: Isaac Newton (Letters to Leibniz 1 [1693], 1693.10.16)
     A reaction: Important if you think that Newton is the hero of the descriptive regularity theory of laws. Newton probably thought laws came from God, but he wouldn't object to Leibniz's view, that God planted the laws within the matter.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / e. Anti scientific essentialism
The motions of the planets could only derive from an intelligent agent [Newton]
     Full Idea: The motions which the planets now have could not spring from any natural cause alone, but were impressed by an intelligent agent.
     From: Isaac Newton (Letters to Bentley [1692], 1692.12.10)
     A reaction: He is writing to a cleric, but seems to be quite sincere about this. Elsewhere he just says he doesn't know what causes gravity.
That gravity should be innate and essential to matter is absurd [Newton]
     Full Idea: That gravity should be innate, inherent and essential to matter ...is to me so great an absurdity that I believe no man who has in philosophical matters a competent faculty of thinking can ever fall into it.
     From: Isaac Newton (Letters to Bentley [1692], 1693.02.25)
     A reaction: He is replying to some sermons, and he pays vague lip service to a possible divine force. Nevertheless, this is thoroughgoing anti-essentialism, and he talks of external 'laws' in the next sentence. Newton still sought the cause of gravity.
27. Natural Reality / A. Classical Physics / 1. Mechanics / a. Explaining movement
Newton reclassified vertical motion as violent, and unconstrained horizontal motion as natural [Newton, by Harré]
     Full Idea: Following Kepler, Newton assumed a law of universal gravitation, thus reclassifying free fall as a violent motion and, with his First Law, fixing horizontal motion in the absence of constraints as natural
     From: report of Isaac Newton (Principia Mathematica [1687]) by Rom Harré - Laws of Nature 1
     A reaction: This is in opposition to the Aristotelian view, where the downward motion of physical objects is their natural motion.
27. Natural Reality / A. Classical Physics / 1. Mechanics / b. Laws of motion
Inertia rejects the Aristotelian idea of things having natural states, to which they return [Newton, by Alexander,P]
     Full Idea: Newton's principle of inertia implies a rejection of the Aristotelian idea of natural states to which things naturally return.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Peter Alexander - Ideas, Qualities and Corpuscles 02.3
     A reaction: I think we can safely say that Aristotle was wrong about this. Aristotle made too much (such as the gravity acting on a thing) intrinsic to the bodies, when the whole context must be seen.
1: Bodies rest, or move in straight lines, unless acted on by forces [Newton]
     Full Idea: Law 1: Every body perseveres in its state of being at rest or of moving uniformly straight forward, except insofar as it is compelled to change its state by forces impressed.
     From: Isaac Newton (Principia Mathematica [1687], Axioms)
     A reaction: This is the new concept of inertia, which revolutionises the picture. Motion itself, which was a profound puzzle for the Greeks, ceases to be a problem by being axiomatised. It is now acceleration which is the the problem.
2: Change of motion is proportional to the force [Newton]
     Full Idea: Law 2: A change in motion is proportional to the motive force impressed and takes place along the straight line in which that force is impressed.
     From: Isaac Newton (Principia Mathematica [1687], Axioms)
     A reaction: This gives the equation 'force = mass x acceleration', where the mass is the constant needed for the equation of proportion. Effectively mass is just the value of a proportion.
3: All actions of bodies have an equal and opposite reaction [Newton]
     Full Idea: Law 3: To any action there is always an opposite and equal reaction; in other words, the action of two bodies upon each other are always equal and always opposite in direction.
     From: Isaac Newton (Principia Mathematica [1687], Axioms)
     A reaction: Is this still true if one body is dented by the impact and the other one isn't? What counts as a 'body'?
Newton's Third Law implies the conservation of momentum [Newton, by Papineau]
     Full Idea: Newton's Third Law implies the conservation of momentum, because 'action and reaction' are always equal.
     From: report of Isaac Newton (Principia Mathematica [1687]) by David Papineau - Thinking about Consciousness App 3
     A reaction: That is, the Third Law implies the First Law (which is the Law of Momentum).
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
Newton's idea of force acting over a long distance was very strange [Heisenberg on Newton]
     Full Idea: Newton introduced a very new and strange hypothesis by assuming a force that acted over a long distance.
     From: comment on Isaac Newton (Principia Mathematica [1687]) by Werner Heisenberg - Physics and Philosophy 06
     A reaction: Why would a force that acted over a short distance be any less mysterious?
Newton introduced forces other than by contact [Newton, by Papineau]
     Full Idea: Newton allowed forces other than impact. All the earlier proponents of 'mechanical philosophy' took it as given that all physical action is by contact. ...He thought of 'impressed force' - disembodied entities acting from outside a body.
     From: report of Isaac Newton (Principia Mathematica [1687]) by David Papineau - Thinking about Consciousness App 3
     A reaction: This is 'action at a distance', which was as bewildering then as quantum theory is now. Newton had a divinity to impose laws of nature from the outside. In some ways we have moved back to the old view, with the actions of bosons and fields.
Newton's laws cover the effects of forces, but not their causes [Newton, by Papineau]
     Full Idea: Newton has a general law about the effects of his forces, ...but there is no corresponding general principle about the causes of such forces.
     From: report of Isaac Newton (Principia Mathematica [1687]) by David Papineau - Thinking about Consciousness App 3
     A reaction: I'm not sure that Einstein gives a cause of gravity either. This seems to be part of the scientific 'instrumentalist' view of nature, which is incredibly useful but very superficial.
Newton's forces were accused of being the scholastics' real qualities [Pasnau on Newton]
     Full Idea: Newton's reliance on the notion of force was widely criticised as marking in effect a return to real qualities.
     From: comment on Isaac Newton (Principia Mathematica [1687]) by Robert Pasnau - Metaphysical Themes 1274-1671 19.7
     A reaction: The objection is to forces that are separate from the bodies they act on. This is one of the reasons why modern metaphysics needs the concept of an intrinsic disposition or power, placing the forces in the stuff.
I am studying the quantities and mathematics of forces, not their species or qualities [Newton]
     Full Idea: I consider in this treatise not the species of forces and their physical qualities, but their quantities and mathematical proportions.
     From: Isaac Newton (Principia Mathematica [1687], 1.1.11 Sch)
     A reaction: Note that Newton is not denying that one might contemplate the species and qualities of forces, as I think Leibniz tried to do, thought he didn't cast any detailed light on them. It is the gap between science and metaphysics.
The aim is to discover forces from motions, and use forces to demonstrate other phenomena [Newton]
     Full Idea: The basic problem of philosophy seems to be to discover the forces of nature from the phenomena of motions and then to demonstrate the other phenomena from these forces.
     From: Isaac Newton (Principia Mathematica [1687], Pref 1st ed), quoted by Daniel Garber - Leibniz:Body,Substance,Monad 4
     A reaction: This fits in with the description-of-regularity approach to laws which Newton had acquired from Galileo, rather than the essentialist attitude to forces of Leibniz, though Newton has smatterings of essentialism.
27. Natural Reality / A. Classical Physics / 1. Mechanics / d. Gravity
Newton showed that falling to earth and orbiting the sun are essentially the same [Newton, by Ellis]
     Full Idea: Newton showed that the apparently different kinds of processes of falling towards the earth and orbiting the sun are essentially the same.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Brian Ellis - Scientific Essentialism 3.08
     A reaction: I quote this to illustrate Newton's permanent achievement in science, in the face of a tendency to say that he was 'outmoded' by the advent of General Relativity. Newton wasn't interestingly wrong. He was very very right.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
Early Newtonians could not formulate conservation of energy, having no concept of potential energy [Newton, by Papineau]
     Full Idea: A barrier to the formulation of an energy conservation principle by early Newtonians was their lack of a notion of potential energy.
     From: report of Isaac Newton (Principia Mathematica [1687]) by David Papineau - Thinking about Consciousness App 3 n5
     A reaction: Interestingly, the notions of potentiality and actuality were central to Aristotle, but Newtonians had just rejected all of that.
27. Natural Reality / C. Space / 4. Substantival Space
Absolute space is independent, homogeneous and immovable [Newton]
     Full Idea: Absolute space, of its own nature without reference to anything external, always remains homogeneous and immovable.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
     A reaction: This would have to be a stipulation, rather than an assertion of fact, since whether space is 'immovable' is either incoherent or unknowable.
27. Natural Reality / D. Time / 1. Nature of Time / a. Absolute time
Newton needs intervals of time, to define velocity and acceleration [Newton, by Le Poidevin]
     Full Idea: Both Newton's First and Second Laws of motion make implicit reference to equal intervals of time. For a body is moving with constant velocity if it covers the same distance in a series of equal intervals (and similarly with acceleration).
     From: report of Isaac Newton (Principia Mathematica [1687]) by Robin Le Poidevin - Travels in Four Dimensions 01 'Time'
     A reaction: [Le Poidevin spells out the acceleration point] You can see why he needs time to be real, if measured chunks of it figure in his laws.
Newton thought his laws of motion needed absolute time [Newton, by Bardon]
     Full Idea: Newton's reason for embracing absolute space, time and motion was that he thought that universal laws of motions were describable only in such terms. Because actual motions are irregular, the time of universal laws of motion cannot depend on them.
     From: report of Isaac Newton (Principia Mathematica [1687]) by Adrian Bardon - Brief History of the Philosophy of Time 3 'Replacing'
     A reaction: I'm not sure of the Einsteinian account of the laws of motion.
Time exists independently, and flows uniformly [Newton]
     Full Idea: Absolute, true, and mathematical time, in and of itself and of its own nature, without reference to anything external, flows uniformly and by another name is called duration.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
     A reaction: This invites the notorious question of, if time flows uniformly, how fast time flows. Maybe we should bite the bullet and say 'one second per second', or maybe we should say 'this fact is beyond our powers of comprehension'.
Absolute time, from its own nature, flows equably, without relation to anything external [Newton]
     Full Idea: Absolute, true, and mathematical time, of itself, and from its own nature, flows equably, without relation to anything external.
     From: Isaac Newton (Principia Mathematica [1687], I:Schol after defs), quoted by Craig Bourne - A Future for Presentism 5.1
     A reaction: I agree totally with this, and I don't care what any modern relativity theorists say. It think Shoemaker's argument gives wonderful support to Newton.
27. Natural Reality / D. Time / 2. Passage of Time / g. Time's arrow
Newtonian mechanics does not distinguish negative from positive values of time [Newton, by Coveney/Highfield]
     Full Idea: In Newton's laws of motion time is squared, so a negative value gives the same result as a positive value, which means Newtonian mechanics cannot distinguish between the two directions of time.
     From: report of Isaac Newton (Principia Mathematica [1687]) by P Coveney / R Highfield - The Arrow of Time 2 'anatomy'
     A reaction: Maybe Newton just forgot to mention that negative values were excluded. (Or was he unaware of the sequence of negative integers?). Too late now - he's done it.
27. Natural Reality / D. Time / 3. Parts of Time / d. Measuring time
If there is no uniform motion, we cannot exactly measure time [Newton]
     Full Idea: It is possible that there is no uniform motion by which time may have an exact measure. All motions can be accelerated and retarded, but the flow of absolute time cannot be changed.
     From: Isaac Newton (Principia Mathematica [1687], Def 8 Schol)
28. God / A. Divine Nature / 3. Divine Perfections
If a perfect being does not rule the cosmos, it is not God [Newton]
     Full Idea: A being, however perfect, without dominion is not the Lord God.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
28. God / B. Proving God / 3. Proofs of Evidence / b. Teleological Proof
The elegance of the solar system requires a powerful intellect as designer [Newton]
     Full Idea: This most elegant system of the sun, planets, and comets could not have arisen without the design and dominion of an intelligent and powerful being.
     From: Isaac Newton (Principia Mathematica [1687], Bk 3 Gen Schol)
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]
     Full Idea: The Egyptians were the first to claim that the soul of a human being is immortal, and that each time the body dies the soul enters another creature just as it is being born.
     From: Herodotus (The Histories [c.435 BCE], 2.123.2)