Combining Philosophers

All the ideas for Herodotus, G.H. von Wright and Robin F. Hendry

unexpand these ideas     |    start again     |     specify just one area for these philosophers


19 ideas

7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
Supervenience is simply modally robust property co-variance [Hendry]
     Full Idea: Supervenience is not an ontological relationship, being just modally robust property co-variance.
     From: Robin F. Hendry (Chemistry [2008], 'Ontol')
     A reaction: I take supervenience to be nothing more than an interesting phenomenon that requires explanation. I suppose Humean Supervenience is a priori metaphysics, since you could hardly explain it.
10. Modality / B. Possibility / 1. Possibility
What is true used to be possible, but it may no longer be so [Wright,GHv]
     Full Idea: It is not very natural to say of that which is true that it is also possible. ...What is true was possible - but whether it still is a potency of the world is not certain.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §5)
     A reaction: A simple and rather important distinction. Before encountering this, I would certainly have been happy to affirm that the actual is possible, but actually it may not be. The power to create differs from the power to sustain. Could God re-create the world?
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Nuclear charge (plus laws) explains electron structure and spectrum, but not vice versa [Hendry]
     Full Idea: Given relevant laws of nature (quantum mechanics, the exclusion principle) nuclear charge determines and explains electronic structure and spectroscopic behaviour, but not vice versa.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: I argue that the first necessary condition for essentialism is a direction of explanation, and here we seem to have one.
26. Natural Theory / B. Natural Kinds / 2. Defining Kinds
Maybe two kinds are the same if there is no change of entropy on isothermal mixing [Hendry]
     Full Idea: One suggestion is that any two different substance, however alike, exhibit a positive entropy change on mixing. So absence of entropy change on isothermal mixing provides a criterion of sameness of kind.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: [He cites Paul Needham 2000] This sounds nice, because at a more amateur level we can say that stuff is the same if mixing two samples of it produces no difference. I call it the Upanishads Test.
26. Natural Theory / C. Causation / 5. Direction of causation
p is a cause and q an effect (not vice versa) if manipulations of p change q [Wright,GHv]
     Full Idea: What makes p a cause-factor relative to the effect-factor q (rather than vice versa) is the fact that by manipulating p, producing changes in it 'at will', we could bring about changes in q.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §8)
     A reaction: As a solution to the direction-of-causation problem, I suspect that this proposal is begging the question. Will a causal explanation be offered of the action of manipulation? If he mistook his manipulation for a cause when it is actually an effect...
We can imagine controlling floods by controlling rain, but not vice versa [Wright,GHv]
     Full Idea: Given our present knowledge of the laws of nature, we can imagine ways of controlling floods by controlling rainfall, but not the other way round. That is should be so, however, is contingent.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §8)
     A reaction: Despite my objections to Idea 8363, this is a good example. It won't establish the metaphysics of the direction of causation, though, because God might control rainfall by controlling floods. Maybe causation is more like a motorway pile-up than dominoes.
26. Natural Theory / C. Causation / 8. Particular Causation / a. Observation of causation
The very notion of a cause depends on agency and action [Wright,GHv]
     Full Idea: There is an implicit dependence of the very notion of a cause on a concept of agency and action.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §10)
     A reaction: This is because he thinks experimental intervention is the key to the concept of causation (see Ideas 8362 and 8363). Others go further, and say that the concept of causation arises from subjective experience of performing actions. I quite like that.
We give regularities a causal character by subjecting them to experiment [Wright,GHv]
     Full Idea: What confers on observed regularities the character of causal or nomic connections is the possibility of subjecting cause-factors to experimental test by interfering with the 'natural' course of events.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §7)
     A reaction: This is von Wright's distinctive proposal, making causation a feature of the culture of science, rather than of ordinary life. But see Idea 2461. Causation is becoming too epistemological for my taste. Either it is a feature of reality, or forget it.
26. Natural Theory / C. Causation / 8. Particular Causation / c. Conditions of causation
We must further analyse conditions for causation, into quantifiers or modal concepts [Wright,GHv]
     Full Idea: We may be able to analyse causation into conditionship relations between events or states of affairs, ...but conditions cannot be regarded as logical primitives, ... and must be analysed into quantifiers, or modal concepts.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §2)
     A reaction: [very compressed] A nice illustration of the aim of analytical philosophy - to analyse the elements of reality down to logical primitives. This is the dream of Descartes and Leibniz, continued by Russell and co. Do we still have this aspiration?
26. Natural Theory / D. Laws of Nature / 2. Types of Laws
Some laws are causal (Ohm's Law), but others are conceptual principles (conservation of energy) [Wright,GHv]
     Full Idea: Not all laws are causal 'experimentalist' laws, such as those for falling bodies, or the Gas Law, or Ohm's Law. Some are more like conceptual principles, giving a frame of reference, such as inertia, or conservation of energy, or the law of entropy.
     From: G.H. von Wright (Logic and Epistemology of Causal Relations [1973], §9)
     A reaction: An interesting and important distinction, whenever one is exploring the links between theories of causation and of laws of nature. If one wished to attack the whole concept of 'laws of nature', this might be a good place to start.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / a. Scientific essentialism
The nature of an element must survive chemical change, so it is the nucleus, not the electrons [Hendry]
     Full Idea: Whatever earns something membership of the extension of 'krypton' must be a property that can survive chemical change and, therefore, the gain and loss of electrons. Hence what makes it krypton must be a nuclear property.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: A very nice illuminating example of essentialism in chemistry. The 'nature' is what survives through change, just like what Aristotle said, innit?
Maybe water is the smallest part of it that still counts as water (which is H2O molecules) [Hendry]
     Full Idea: If they do count as water, individual H2O molecules are the smallest items that can qualify as water on their own account. Hydroxyl ions and protons, in contrast, qualify as water only as part of a larger body.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: As Aristotle might say, this is the homoeomerous aspect of water. This is Hendry's own proposal, and seems rather good.
Maybe the nature of water is macroscopic, and not in the microstructure [Hendry]
     Full Idea: Some deny that that microstructure is what makes it water; substance identity and difference should be determined instead by macroscopic similarities and differences.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: Very plausible. Is the essential nature of human beings to be found in the structure of our cells?
27. Natural Reality / F. Chemistry / 1. Chemistry
Compounds can differ with the same collection of atoms, so structure matters too [Hendry]
     Full Idea: The distinctness of the isomers ethanol (CH3CH2OH, boiling at 78.4°) and dimethyl ether (CH3OCH3, boiling at -24.9°) must lie in their different molecular structures. ...But structure has continuously varying quantities, like bond length and angle.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: [compressed] This seems to imply that what matters is an idealised abstraction of the structure (i.e. its topology), which is a reason for denying that chemistry is reducible to mere physics.
Water continuously changes, with new groupings of molecules [Hendry]
     Full Idea: Macroscopic bodies of water are complex and dynamic congeries of different molecular species, in which there is a constant dissociation of individual molecules, re-association of ions, and formation, growth and disassociation of oligomers.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: The point is that these activities are needed to explain the behaviour of water (such as its conductivity).
27. Natural Reality / F. Chemistry / 2. Modern Elements
Elements survive chemical change, and are tracked to explain direction and properties [Hendry]
     Full Idea: Elements survive chemical change, and chemical explanations track them from one composite substance to another, thereby explaining both the direction of the chemical change, and the properties of the substances they compose.
     From: Robin F. Hendry (Chemistry [2008], Intro)
     A reaction: [The 16,000th idea of this database, entered on Guy Fawkes' Day 2013]
Defining elements by atomic number allowed atoms of an element to have different masses [Hendry]
     Full Idea: In 1923 elements were defined as populations of atoms with the same nuclear charge (i.e. atomic number), allowing that atoms of the same element may have different masses.
     From: Robin F. Hendry (Chemistry [2008], 'Chem')
     A reaction: The point is that it allowed isotopes of the same element to come under one heading. This is fine for the heavier elements, but a bit dubious for the very light ones (where an isotope makes a bigger difference).
27. Natural Reality / F. Chemistry / 3. Periodic Table
Generally it is nuclear charge (not nuclear mass) which determines behaviour [Hendry]
     Full Idea: In general, nuclear charge is the overwhelming determinant of an element's chemical behaviour, while nuclear mass is a negligible factor.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: The exception is the isotopes of very light elements light hydrogen.
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]
     Full Idea: The Egyptians were the first to claim that the soul of a human being is immortal, and that each time the body dies the soul enters another creature just as it is being born.
     From: Herodotus (The Histories [c.435 BCE], 2.123.2)