Combining Philosophers

All the ideas for Herodotus, Ian McFetridge and John Mayberry

unexpand these ideas     |    start again     |     specify just one area for these philosophers


44 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
3. Truth / B. Truthmakers / 1. For Truthmakers
We want to know what makes sentences true, rather than defining 'true' [McFetridge]
     Full Idea: The generalisation 'What makes a (any) sentence true?' is not a request for definitions of 'true' (the concept), but rather requests for (partial) explanations of why certain particular sentences are true.
     From: Ian McFetridge (Truth, Correspondence, Explanation and Knowledge [1977], II)
     A reaction: McFetridge is responding to the shortcomings of Tarski's account of truth. The mystery seems to be why some of our representations of the world are 'successful', and others are not.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
7. Existence / D. Theories of Reality / 8. Facts / a. Facts
We normally explain natural events by citing further facts [McFetridge]
     Full Idea: If one were asked 'What makes salt soluble in water?', the most natural answer would be something of the style 'The fact that it has such-and-such structure'.
     From: Ian McFetridge (Truth, Correspondence, Explanation and Knowledge [1977], II)
     A reaction: Personally I would want to talk about its 'powers' (dispositional properties), rather than its 'structure' (categorical properties). This defends facts, but you could easily paraphrase 'fact' out of this reply (as McFetridge realised).
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity overrules all other necessities [McFetridge]
     Full Idea: If it is logically necessary that if p then q, then there is no other sense of 'necessary' in which it is not necessary that if p then q.
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §1)
     A reaction: The thesis which McFetridge proposes to defend. The obvious rival would be metaphysical necessity, and the rival claim would presumably be that things are only logically necessary if that is entailed by a metaphysical necessity. Metaphysics drives logic.
The fundamental case of logical necessity is the valid conclusion of an inference [McFetridge, by Hale]
     Full Idea: McFetridge's conception of logical necessity is one which sees the concept as receiving its fundamental exemplification in the connection between the premiss and conclusion of a deductively valid inference.
     From: report of Ian McFetridge (Logical Necessity: Some Issues [1986]) by Bob Hale - Absolute Necessities 2
     A reaction: This would mean that p could be logically necessary but false (if it was a valid argument from false premisses). What if it was a valid inference in a dodgy logical system (including 'tonk', for example)?
In the McFetridge view, logical necessity means a consequent must be true if the antecedent is [McFetridge, by Hale]
     Full Idea: McFetridge's view proves that if the conditional corresponding to a valid inference is logically necessary, then there is no sense in which it is possible that its antecedent be true but its consequent false. ..This result generalises to any statement.
     From: report of Ian McFetridge (Logical Necessity: Some Issues [1986]) by Bob Hale - Absolute Necessities 2
     A reaction: I am becoming puzzled by Hale's assertion that logical necessity is 'absolute', while resting his case on a conditional. Are we interested in the necessity of the inference, or the necessity of the consequent?
Logical necessity requires that a valid argument be necessary [McFetridge]
     Full Idea: There will be a legitimate notion of 'logical' necessity only if there is a notion of necessity which attaches to the claim, concerning a deductively valid argument, that if the premisses are true then so is the conclusion.
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §1)
     A reaction: He quotes Aristotle's Idea 11148 in support. Is this resting a stronger idea on a weaker one? Or is it the wrong way round? We endorse validity because we see the necessity; we don't endorse necessity because we see 'validity'.
Traditionally, logical necessity is the strongest, and entails any other necessities [McFetridge]
     Full Idea: The traditional crucial assumption is that logical necessity is the strongest notion of necessity. If it is logically necessary that p, then it is necessary that p in any other use of the notion of necessity there may be (physically, practically etc.).
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §1)
     A reaction: Sounds right. We might say it is physically necessary simply because it is logically necessary, and even that it is metaphysically necessary because it is logically necessary (required by logic). Logical possibility is hence the weakest kind?
It is only logical necessity if there is absolutely no sense in which it could be false [McFetridge]
     Full Idea: Is there any sense in which, despite an ascription of necessity to p, it is held that not-p is possible? If there is, then the original claim then it was necessary is not a claim of 'logical' necessity (which is the strongest necessity).
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §1)
     A reaction: See Idea 12181, which leads up to this proposed "test" for logical necessity. McFetridge has already put epistemic ('for all I know') possibility to one side. □p→¬◊¬p is the standard reading of necessity. His word 'sense' bears the burden.
The mark of logical necessity is deduction from any suppositions whatever [McFetridge]
     Full Idea: The manifestation of the belief that a mode of inference is logically necessarily truth-preserving is the preparedness to employ that mode of inference in reasoning from any set of suppositions whatsoever.
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §4)
     A reaction: He rests this on the idea of 'cotenability' of the two sides of a counterfactual (in Mill, Goodman and Lewis). There seems, at first blush, to be a problem of the relevance of the presuppositions.
10. Modality / B. Possibility / 2. Epistemic possibility
We assert epistemic possibility without commitment to logical possibility [McFetridge]
     Full Idea: Time- and person-relative epistemic possibility can be asserted even when logical possibility cannot, such as undecided mathematical propositions. 'It may be that p' just comes to 'For all I know, not-p'.
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §1)
     A reaction: If it is possible 'for all I know', then it could be actual for all I know, and if we accept that it might be actual, we could hardly deny that it is logically possible. Logical and epistemic possibilities of mathematical p stand or fall together.
10. Modality / C. Sources of Modality / 1. Sources of Necessity
Objectual modal realists believe in possible worlds; non-objectual ones rest it on the actual world [McFetridge]
     Full Idea: The 'objectual modal realist' holds that what makes modal beliefs true are certain modal objects, typically 'possible worlds'. ..The 'non-objectual modal realist' says modal judgements are made true by how things stand with respect to this world.
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §2)
     A reaction: I am an enthusiastic 'non-objectual modal realist'. I accept the argument that real possible worlds have no relevance to the actual world, and explain nothing (see Jubien). The possibilities reside in the 'powers' of this world. See Molnar on powers.
10. Modality / C. Sources of Modality / 5. Modality from Actuality
Modal realists hold that necessities and possibilities are part of the totality of facts [McFetridge]
     Full Idea: The 'modal realist' holds that part of the totality of what is the case, the totality of facts, are such things as that certain events could have happened, certain propositions are necessarily true, if this happened then that would have been the case.
     From: Ian McFetridge (Logical Necessity: Some Issues [1986], §2)
     A reaction: I am an enthusiastic modal realist. If the aim of philosophy is 'to understand' (and I take that to be the master idea of the subject) then no understanding is possible which excludes the possibilities and necessities in things.
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]
     Full Idea: The Egyptians were the first to claim that the soul of a human being is immortal, and that each time the body dies the soul enters another creature just as it is being born.
     From: Herodotus (The Histories [c.435 BCE], 2.123.2)