Combining Philosophers

All the ideas for Herodotus, John Mayberry and Frank P. Ramsey

unexpand these ideas     |    start again     |     specify just one area for these philosophers


55 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions make our intuitions mathematically useful [Mayberry]
     Full Idea: Definition provides us with the means for converting our intuitions into mathematically usable concepts.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
2. Reason / E. Argument / 6. Conclusive Proof
Proof shows that it is true, but also why it must be true [Mayberry]
     Full Idea: When you have proved something you know not only that it is true, but why it must be true.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
     A reaction: Note the word 'must'. Presumably both the grounding and the necessitation of the truth are revealed.
3. Truth / H. Deflationary Truth / 1. Redundant Truth
"It is true that x" means no more than x [Ramsey]
     Full Idea: It is evident that "It is true that Caesar was murdered" means no more than that Caesar was murdered.
     From: Frank P. Ramsey (Facts and Propositions [1927])
     A reaction: At the very least, saying it is true adds emphasis. One sentence is about Caesar, the other about a proposal concerning Caesar, so they can't quite be the same. Note Frege's priority in making this suggestion.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Set theory can't be axiomatic, because it is needed to express the very notion of axiomatisation [Mayberry]
     Full Idea: Set theory cannot be an axiomatic theory, because the very notion of an axiomatic theory makes no sense without it.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: This will come as a surprise to Penelope Maddy, who battles with ways to accept the set theory axioms as the foundation of mathematics. Mayberry says that the basic set theory required is much more simple and intuitive.
There is a semi-categorical axiomatisation of set-theory [Mayberry]
     Full Idea: We can give a semi-categorical axiomatisation of set-theory (all that remains undetermined is the size of the set of urelements and the length of the sequence of ordinals). The system is second-order in formalisation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.413-2)
     A reaction: I gather this means the models may not be isomorphic to one another (because they differ in size), but can be shown to isomorphic to some third ingredient. I think. Mayberry says this shows there is no such thing as non-Cantorian set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: there is an infinity of distinguishable individuals [Ramsey]
     Full Idea: The Axiom of Infinity means that there are an infinity of distinguishable individuals, which is an empirical proposition.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §5)
     A reaction: The Axiom sounds absurd, as a part of a logical system, but Ramsey ends up defending it. Logical tautologies, which seem to be obviously true, are rendered absurd if they don't refer to any objects, and some of them refer to infinities of objects.
The misnamed Axiom of Infinity says the natural numbers are finite in size [Mayberry]
     Full Idea: The (misnamed!) Axiom of Infinity expresses Cantor's fundamental assumption that the species of natural numbers is finite in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Reducibility: to every non-elementary function there is an equivalent elementary function [Ramsey]
     Full Idea: The Axiom of Reducibility asserted that to every non-elementary function there is an equivalent elementary function [note: two functions are equivalent when the same arguments render them both true or both false].
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §2)
     A reaction: Ramsey in the business of showing that this axiom from Russell and Whitehead is not needed. He says that the axiom seems to be needed for induction and for Dedekind cuts. Since the cuts rest on it, and it is weak, Ramsey says it must go.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The set hierarchy doesn't rely on the dubious notion of 'generating' them [Mayberry]
     Full Idea: The idea of 'generating' sets is only a metaphor - the existence of the hierarchy is established without appealing to such dubious notions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
     A reaction: Presumably there can be a 'dependence' or 'determination' relation which does not involve actual generation.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of size is part of the very conception of a set [Mayberry]
     Full Idea: Our very notion of a set is that of an extensional plurality limited in size.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The mainstream of modern logic sees it as a branch of mathematics [Mayberry]
     Full Idea: In the mainstream tradition of modern logic, beginning with Boole, Peirce and Schröder, descending through Löwenheim and Skolem to reach maturity with Tarski and his school ...saw logic as a branch of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-1)
     A reaction: [The lesser tradition, of Frege and Russell, says mathematics is a branch of logic]. Mayberry says the Fregean tradition 'has almost died out'.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic only has its main theorems because it is so weak [Mayberry]
     Full Idea: First-order logic is very weak, but therein lies its strength. Its principle tools (Compactness, Completeness, Löwenheim-Skolem Theorems) can be established only because it is too weak to axiomatize either arithmetic or analysis.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.411-2)
     A reaction: He adds the proviso that this is 'unless we are dealing with structures on whose size we have placed an explicit, finite bound' (p.412-1).
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Only second-order logic can capture mathematical structure up to isomorphism [Mayberry]
     Full Idea: Second-order logic is a powerful tool of definition: by means of it alone we can capture mathematical structure up to isomorphism using simple axiom systems.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Either 'a = b' vacuously names the same thing, or absurdly names different things [Ramsey]
     Full Idea: In 'a = b' either 'a' and 'b' are names of the same thing, in which case the proposition says nothing, or of different things, in which case it is absurd. In neither case is it an assertion of a fact; it only asserts when a or b are descriptions.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §1)
     A reaction: This is essentially Frege's problem with Hesperus and Phosphorus. How can identities be informative? So 2+2=4 is extensionally vacuous, but informative because they are different descriptions.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Big logic has one fixed domain, but standard logic has a domain for each interpretation [Mayberry]
     Full Idea: The 'logica magna' [of the Fregean tradition] has quantifiers ranging over a fixed domain, namely everything there is. In the Boolean tradition the domains differ from interpretation to interpretation.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.410-2)
     A reaction: Modal logic displays both approaches, with different systems for global and local domains.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
No Löwenheim-Skolem logic can axiomatise real analysis [Mayberry]
     Full Idea: No logic which can axiomatize real analysis can have the Löwenheim-Skolem property.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
'Classificatory' axioms aim at revealing similarity in morphology of structures [Mayberry]
     Full Idea: The purpose of a 'classificatory' axiomatic theory is to single out an otherwise disparate species of structures by fixing certain features of morphology. ...The aim is to single out common features.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
Axiomatiation relies on isomorphic structures being essentially the same [Mayberry]
     Full Idea: The central dogma of the axiomatic method is this: isomorphic structures are mathematically indistinguishable in their essential properties.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.406-2)
     A reaction: Hence it is not that we have to settle for the success of a system 'up to isomorphism', since that was the original aim. The structures must differ in their non-essential properties, or they would be the same system.
'Eliminatory' axioms get rid of traditional ideal and abstract objects [Mayberry]
     Full Idea: The purpose of what I am calling 'eliminatory' axiomatic theories is precisely to eliminate from mathematics those peculiar ideal and abstract objects that, on the traditional view, constitute its subject matter.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-1)
     A reaction: A very interesting idea. I have a natural antipathy to 'abstract objects', because they really mess up what could otherwise be a very tidy ontology. What he describes might be better called 'ignoring' axioms. The objects may 'exist', but who cares?
5. Theory of Logic / K. Features of Logics / 6. Compactness
No logic which can axiomatise arithmetic can be compact or complete [Mayberry]
     Full Idea: No logic which can axiomatise arithmetic can be compact or complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
     A reaction: I take this to be because there are new truths in the transfinite level (as well as the problem of incompleteness).
5. Theory of Logic / L. Paradox / 1. Paradox
Contradictions are either purely logical or mathematical, or they involved thought and language [Ramsey]
     Full Idea: Group A consists of contradictions which would occur in a logical or mathematical system, involving terms such as class or number. Group B contradictions are not purely logical, and contain some reference to thought, language or symbolism.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], p.171), quoted by Graham Priest - The Structure of Paradoxes of Self-Reference 1
     A reaction: This has become the orthodox division of all paradoxes, but the division is challenged by Priest (Idea 13373). He suggests that we now realise (post-Tarski?) that language is more involved in logic and mathematics than we thought.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers can be eliminated, by axiom systems for complete ordered fields [Mayberry]
     Full Idea: We eliminate the real numbers by giving an axiomatic definition of the species of complete ordered fields. These axioms are categorical (mutually isomorphic), and thus are mathematically indistinguishable.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: Hence my clever mathematical friend says that it is a terrible misunderstanding to think that mathematics is about numbers. Mayberry says the reals are one ordered field, but mathematics now studies all ordered fields together.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / b. Quantity
Greek quantities were concrete, and ratio and proportion were their science [Mayberry]
     Full Idea: Quantities for Greeks were concrete things - lines, surfaces, solids, times, weights. At the centre of their science of quantity was the beautiful theory of ratio and proportion (...in which the notion of number does not appear!).
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
     A reaction: [He credits Eudoxus, and cites Book V of Euclid]
Real numbers were invented, as objects, to simplify and generalise 'quantity' [Mayberry]
     Full Idea: The abstract objects of modern mathematics, the real numbers, were invented by the mathematicians of the seventeenth century in order to simplify and to generalize the Greek science of quantity.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.407-2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's infinite is an absolute, of all the sets or all the ordinal numbers [Mayberry]
     Full Idea: In Cantor's new vision, the infinite, the genuine infinite, does not disappear, but presents itself in the guise of the absolute, as manifested in the species of all sets or the species of all ordinal numbers.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
Cantor extended the finite (rather than 'taming the infinite') [Mayberry]
     Full Idea: We may describe Cantor's achievement by saying, not that he tamed the infinite, but that he extended the finite.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.414-2)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
If proof and definition are central, then mathematics needs and possesses foundations [Mayberry]
     Full Idea: If we grant, as surely we must, the central importance of proof and definition, then we must also grant that mathematics not only needs, but in fact has, foundations.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
The ultimate principles and concepts of mathematics are presumed, or grasped directly [Mayberry]
     Full Idea: The ultimate principles upon which mathematics rests are those to which mathematicians appeal without proof; and the primitive concepts of mathematics ...themselves are grasped directly, if grasped at all, without the mediation of definition.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-1)
     A reaction: This begs the question of whether the 'grasping' is purely a priori, or whether it derives from experience. I defend the latter, and Jenkins puts the case well.
Foundations need concepts, definition rules, premises, and proof rules [Mayberry]
     Full Idea: An account of the foundations of mathematics must specify four things: the primitive concepts for use in definitions, the rules governing definitions, the ultimate premises of proofs, and rules allowing advance from premises to conclusions.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.405-2)
Axiom theories can't give foundations for mathematics - that's using axioms to explain axioms [Mayberry]
     Full Idea: No axiomatic theory, formal or informal, of first or of higher order can logically play a foundational role in mathematics. ...It is obvious that you cannot use the axiomatic method to explain what the axiomatic method is.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
1st-order PA is only interesting because of results which use 2nd-order PA [Mayberry]
     Full Idea: The sole theoretical interest of first-order Peano arithmetic derives from the fact that it is a first-order reduct of a categorical second-order theory. Its axioms can be proved incomplete only because the second-order theory is categorical.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
It is only 2nd-order isomorphism which suggested first-order PA completeness [Mayberry]
     Full Idea: If we did not know that the second-order axioms characterise the natural numbers up to isomorphism, we should have no reason to suppose, a priori, that first-order Peano Arithmetic should be complete.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-1)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory is not just first-order ZF, because that is inadequate for mathematics [Mayberry]
     Full Idea: The idea that set theory must simply be identified with first-order Zermelo-Fraenkel is surprisingly widespread. ...The first-order axiomatic theory of sets is clearly inadequate as a foundation of mathematics.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.412-2)
     A reaction: [He is agreeing with a quotation from Skolem].
We don't translate mathematics into set theory, because it comes embodied in that way [Mayberry]
     Full Idea: One does not have to translate 'ordinary' mathematics into the Zermelo-Fraenkel system: ordinary mathematics comes embodied in that system.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.415-1)
     A reaction: Mayberry seems to be a particular fan of set theory as spelling out the underlying facts of mathematics, though it has to be second-order.
Set theory is not just another axiomatised part of mathematics [Mayberry]
     Full Idea: The fons et origo of all confusion is the view that set theory is just another axiomatic theory and the universe of sets just another mathematical structure. ...The universe of sets ...is the world that all mathematical structures inhabit.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.416-1)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
The 'simple theory of types' distinguishes levels among properties [Ramsey, by Grayling]
     Full Idea: The idea that there should be something like a distinction of levels among properties is captured in Ramsey's 'simple theory of types'.
     From: report of Frank P. Ramsey (works [1928]) by A.C. Grayling - Russell
     A reaction: I merely report this, though it is not immediately obvious how anyone would decide which 'level' a type belonged on.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Formalists neglect content, but the logicists have focused on generalizations, and neglected form [Ramsey]
     Full Idea: The formalists neglected the content altogether and made mathematics meaningless, but the logicians neglected the form and made mathematics consist of any true generalisations; only by taking account of both sides can we obtain an adequate theory.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §1)
     A reaction: He says mathematics is 'tautological generalizations'. It is a criticism of modern structuralism that it overemphasises form, and fails to pay attention to the meaning of the concepts which stand at the 'nodes' of the structure.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism is hopeless, because it focuses on propositions and ignores concepts [Ramsey]
     Full Idea: The hopelessly inadequate formalist theory is, to some extent, the result of considering only the propositions of mathematics and neglecting the analysis of its concepts.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], §1)
     A reaction: You'll have to read Ramsey to see how this thought pans out, but it at least gives a pointer to how to go about addressing the question.
8. Modes of Existence / D. Universals / 1. Universals
The distinction between particulars and universals is a mistake made because of language [Ramsey]
     Full Idea: The whole theory of particulars and universals is due to mistaking for a fundamental characteristic of reality what is merely a characteristic of language.
     From: Frank P. Ramsey (Universals [1925], p.13)
     A reaction: [Fraser MacBride has pursued this idea] It is rather difficult to deny the existence of particulars, in the sense of actual objects, so this appears to make Ramsey a straightforward nominalist, of some sort or other.
We could make universals collections of particulars, or particulars collections of their qualities [Ramsey]
     Full Idea: The two obvious methods of abolishing the distinction between particulars and universals are by holding either that universals are collections of particulars, or that particulars are collections of their qualities.
     From: Frank P. Ramsey (Universals [1925], p.8)
     A reaction: Ramsey proposes an error theory, arising out of language. Quine seems to offer another attempt, making objects and predication unanalysable and basic. Abstract reference seems to make the strongest claim to separate out the universals.
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
Obviously 'Socrates is wise' and 'Socrates has wisdom' express the same fact [Ramsey]
     Full Idea: It seems to me as clear as anything can be in philosophy that the two sentences 'Socrates is wise' and 'wisdom is a characteristic of Socrates' assert the same fact and express the same proposition.
     From: Frank P. Ramsey (Universals [1925], p.12)
     A reaction: Could be challenged. One says Socrates is just the way he is, the other says he is attached to an abstract entity greater than himself. The squabble over universals has become a squabble over logical form. Finding logical form needs metaphysics!
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Real numbers as abstracted objects are now treated as complete ordered fields [Mayberry]
     Full Idea: The abstractness of the old fashioned real numbers has been replaced by generality in the modern theory of complete ordered fields.
     From: John Mayberry (What Required for Foundation for Maths? [1994], p.408-2)
     A reaction: In philosophy, I'm increasingly thinking that we should talk much more of 'generality', and a great deal less about 'universals'. (By which I don't mean that redness is just the set of red things).
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
'If' is the same as 'given that', so the degrees of belief should conform to probability theory [Ramsey, by Ramsey]
     Full Idea: Ramsey suggested that 'if', 'given that' and 'on the supposition that' come to the same thing, and that the degrees of belief in the antecedent should then conform to probability theory.
     From: report of Frank P. Ramsey (Truth and Probability [1926]) by Frank P. Ramsey - Law and Causality B
     A reaction: [compressed]
Ramsey's Test: believe the consequent if you believe the antecedent [Ramsey, by Read]
     Full Idea: Ramsey's Test for conditionals is that a conditional should be believed if a belief in its antecedent would commit one to believing its consequent.
     From: report of Frank P. Ramsey (Law and Causality [1928]) by Stephen Read - Thinking About Logic Ch.3
     A reaction: A rather pragmatic approach to conditionals
10. Modality / B. Possibility / 8. Conditionals / e. Supposition conditionals
Asking 'If p, will q?' when p is uncertain, then first add p hypothetically to your knowledge [Ramsey]
     Full Idea: If two people are arguing 'If p, will q?' and are both in doubt as to p, they are adding p hypothetically to their stock of knowledge, and arguing on that basis about q; ...they are fixing their degrees of belief in q given p.
     From: Frank P. Ramsey (Law and Causality [1928], B 155 n)
     A reaction: This has become famous as the 'Ramsey Test'. Bennett emphasises that he is not saying that you should actually believe p - you are just trying it for size. The presupposition approach to conditionals seems attractive. Edgington likes 'degrees'.
11. Knowledge Aims / A. Knowledge / 4. Belief / c. Aim of beliefs
Beliefs are maps by which we steer [Ramsey]
     Full Idea: Beliefs are maps by which we steer.
     From: Frank P. Ramsey (works [1928]), quoted by Georges Rey - Contemporary Philosophy of Mind p.259 n5
11. Knowledge Aims / A. Knowledge / 4. Belief / d. Cause of beliefs
I just confront the evidence, and let it act on me [Ramsey]
     Full Idea: I can but put the evidence before me, and let it act on my mind.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], p.202), quoted by Michael Potter - The Rise of Analytic Philosophy 1879-1930 70 'Deg'
     A reaction: Potter calls this observation 'downbeat', but I am an enthusiastic fan. It is roughly my view of both concept formation and of knowledge. You soak up the world, and respond appropriately. The trick is in the selection of evidence to confront.
13. Knowledge Criteria / C. External Justification / 3. Reliabilism / a. Reliable knowledge
A belief is knowledge if it is true, certain and obtained by a reliable process [Ramsey]
     Full Idea: I have always said that a belief was knowledge if it was 1) true, ii) certain, iii) obtained by a reliable process.
     From: Frank P. Ramsey (The Foundations of Mathematics [1925], p.258), quoted by Michael Potter - The Rise of Analytic Philosophy 1879-1930 66 'Rel'
     A reaction: Not sure why it has to be 'certain' as well as 'true'. It seems that 'true' is objective, and 'certain' subjective. I think I know lots of things of which I am not fully certain. Reliabilism long preceded Alvin Goldman.
Belief is knowledge if it is true, certain, and obtained by a reliable process [Ramsey]
     Full Idea: I have always said that a belief was knowledge if it was (i) true, (ii) certain, (iii) obtained by a reliable process.
     From: Frank P. Ramsey (Knowledge [1929]), quoted by Juan Comesaña - Reliabilism 2
     A reaction: Remarkable to be addressing the Gettier problem at that date, but Russell had flirted with the problem. Ramsey says the production of the belief must be reliable, rather than the justification for the belief. Note that he wants certainty.
14. Science / B. Scientific Theories / 8. Ramsey Sentences
Mental terms can be replaced in a sentence by a variable and an existential quantifier [Ramsey]
     Full Idea: Ramsey Sentences are his technique for eliminating theoretical terms in science (and can be applied to mental terms, or to social rights); a term in a sentence is replaced by a variable and an existential quantifier.
     From: Frank P. Ramsey (Law and Causality [1928]), quoted by Thomas Mautner - Penguin Dictionary of Philosophy p.469
     A reaction: The technique is used by functionalists and results in a sort of eliminativism. The intrinsic nature of mental states is eliminated, because everything worth saying can be expressed in terms of functional/causal role. Sounds wrong to me.
14. Science / C. Induction / 6. Bayes's Theorem
Ramsey gave axioms for an uncertain agent to decide their preferences [Ramsey, by Davidson]
     Full Idea: Ramsey gave an axiomatic treatment of preference in the face of uncertainty, when applied to a particular agent.
     From: report of Frank P. Ramsey (Truth and Probability [1926]) by Donald Davidson - Truth and Predication 2
     A reaction: This is evidently the beginnings of Bayesian decision theory.
19. Language / A. Nature of Meaning / 7. Meaning Holism / c. Meaning by Role
Sentence meaning is given by the actions to which it would lead [Ramsey]
     Full Idea: The meaning of a sentence is to be defined by reference to the actions to which asserting it would lead.
     From: Frank P. Ramsey (Facts and Propositions [1927], p.51), quoted by Ian Rumfitt - The Boundary Stones of Thought
     A reaction: I find this idea quite bizarre. Most sentences have no connection to any action or behavior at all. Do we have to ingeniously contrive some possible action? That is the worst sort of behaviourism. See context - Ramsey wasn't stupid!
26. Natural Theory / D. Laws of Nature / 4. Regularities / b. Best system theory
All knowledge needs systematizing, and the axioms would be the laws of nature [Ramsey]
     Full Idea: Even if we knew everything, we should still want to systematize our knowledge as a deductive system, and the general axioms in that system would be the fundamental laws of nature.
     From: Frank P. Ramsey (Law and Causality [1928], §A)
     A reaction: This is the Mill-Ramsey-Lewis view. Cf. Idea 9420.
Causal laws result from the simplest axioms of a complete deductive system [Ramsey]
     Full Idea: Causal laws are consequences of those propositions which we should take as axioms if we knew everything and organized it as simply as possible in a deductive system.
     From: Frank P. Ramsey (Law and Causality [1928], §B)
     A reaction: Cf. Idea 9418.
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]
     Full Idea: The Egyptians were the first to claim that the soul of a human being is immortal, and that each time the body dies the soul enters another creature just as it is being born.
     From: Herodotus (The Histories [c.435 BCE], 2.123.2)