Combining Philosophers

All the ideas for Herodotus, Scott Soames and Herbert B. Enderton

unexpand these ideas     |    start again     |     specify just one area for these philosophers


56 ideas

1. Philosophy / C. History of Philosophy / 5. Modern Philosophy / c. Modern philosophy mid-period
Analytic philosophy loved the necessary a priori analytic, linguistic modality, and rigour [Soames]
     Full Idea: The golden age of analytic philosophy (mid 20th c) was when necessary, a priori and analytic were one, all possibility was linguistic possibility, and the linguistic turn gave philosophy a respectable subject matter (language), and precision and rigour.
     From: Scott Soames (Significance of the Kripkean Nec A Posteriori [2006], p.166)
     A reaction: Gently sarcastic, because Soames is part of the team who have put a bomb under this view, and quite right too. Personally I think the biggest enemy in all of this lot is not 'language' but 'rigour'. A will-o-the-wisp philosophers dream of.
1. Philosophy / F. Analytic Philosophy / 5. Linguistic Analysis
If philosophy is analysis of meaning, available to all competent speakers, what's left for philosophers? [Soames]
     Full Idea: If all of philosophy is the analysis of meaning, and meaning is fundamentally transparent to competent speakers, there is little room for philosophically significant explanations and theories, since they will be necessary or a priori, or both.
     From: Scott Soames (Significance of the Kripkean Nec A Posteriori [2006], p.186)
     A reaction: He cites the later Wittgenstein as having fallen into this trap. I suppose any area of life can have its specialists, but I take Shakespeare to be a greater master of English than any philosopher I have ever read.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
     Full Idea: Until the 1960s standard truth-table semantics were the only ones that there were.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.10.1)
     A reaction: The 1960s presumably marked the advent of possible worlds.
4. Formal Logic / D. Modal Logic ML / 1. Modal Logic
The interest of quantified modal logic is its metaphysical necessity and essentialism [Soames]
     Full Idea: The chief philosophical interest in quantified modal logic lies with metaphysical necessity, essentialism, and the nontrivial modal de re.
     From: Scott Soames (Philosophy of Language [2010], 3.1)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'dom R' indicates the 'domain' of objects having a relation [Enderton]
     Full Idea: 'dom R' indicates the 'domain' of a relation, that is, the set of all objects that are members of ordered pairs and that have that relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'fld R' indicates the 'field' of all objects in the relation [Enderton]
     Full Idea: 'fld R' indicates the 'field' of a relation, that is, the set of all objects that are members of ordered pairs on either side of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'ran R' indicates the 'range' of objects being related to [Enderton]
     Full Idea: 'ran R' indicates the 'range' of a relation, that is, the set of all objects that are members of ordered pairs and that are related to by the first objects.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
     Full Idea: We write F : A → B to indicate that A maps into B, that is, the domain of relating things is set A, and the things related to are all in B. If we add that F = B, then A maps 'onto' B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'F(x)' is the unique value which F assumes for a value of x [Enderton]
     Full Idea: F(x) is a 'function', which indicates the unique value which y takes in ∈ F. That is, F(x) is the value y which F assumes at x.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A 'linear or total ordering' must be transitive and satisfy trichotomy [Enderton]
     Full Idea: A 'linear ordering' (or 'total ordering') on A is a binary relation R meeting two conditions: R is transitive (of xRy and yRz, the xRz), and R satisfies trichotomy (either xRy or x=y or yRx).
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:62)
∈ says the whole set is in the other; ⊆ says the members of the subset are in the other [Enderton]
     Full Idea: To know if A ∈ B, we look at the set A as a single object, and check if it is among B's members. But if we want to know whether A ⊆ B then we must open up set A and check whether its various members are among the members of B.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:04)
     A reaction: This idea is one of the key ideas to grasp if you are going to get the hang of set theory. John ∈ USA ∈ UN, but John is not a member of the UN, because he isn't a country. See Idea 12337 for a special case.
The 'ordered pair' <x,y> is defined to be {{x}, {x,y}} [Enderton]
     Full Idea: The 'ordered pair' <x,y> is defined to be {{x}, {x,y}}; hence it can be proved that <u,v> = <x,y> iff u = x and v = y (given by Kuratowski in 1921). ...The definition is somewhat arbitrary, and others could be used.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:36)
     A reaction: This looks to me like one of those regular cases where the formal definitions capture all the logical behaviour of the concept that are required for inference, while failing to fully capture the concept for ordinary conversation.
The 'powerset' of a set is all the subsets of a given set [Enderton]
     Full Idea: The 'powerset' of a set is all the subsets of a given set. Thus: PA = {x : x ⊆ A}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
Two sets are 'disjoint' iff their intersection is empty [Enderton]
     Full Idea: Two sets are 'disjoint' iff their intersection is empty (i.e. they have no members in common).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
     Full Idea: The 'domain' of a relation is the set of all objects that are members of ordered pairs that are members of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'relation' is a set of ordered pairs [Enderton]
     Full Idea: A 'relation' is a set of ordered pairs. The ordering relation on the numbers 0-3 is captured by - in fact it is - the set of ordered pairs {<0,1>,<0,2>,<0,3>,<1,2>,<1,3>,<2,3>}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
     A reaction: This can't quite be a definition of order among numbers, since it relies on the notion of a 'ordered' pair.
A 'function' is a relation in which each object is related to just one other object [Enderton]
     Full Idea: A 'function' is a relation which is single-valued. That is, for each object, there is only one object in the function set to which that object is related.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
     Full Idea: A function 'maps A into B' if the domain of relating things is set A, and the things related to are all in B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
     Full Idea: A function 'maps A onto B' if the domain of relating things is set A, and the things related to are set B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
     Full Idea: A relation is 'reflexive' on a set if every member of the set bears the relation to itself.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
     Full Idea: A relation is 'symmetric' on a set if every ordered pair in the set has the relation in both directions.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
     Full Idea: A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
     Full Idea: A relation is 'transitive' on a set if the relation can be carried over from two ordered pairs to a third.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
     Full Idea: A relation satisfies 'trichotomy' on a set if every ordered pair is related (in either direction), or the objects are identical.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ [Enderton]
     Full Idea: Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ. A man with an empty container is better off than a man with nothing.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1.03)
The empty set may look pointless, but many sets can be constructed from it [Enderton]
     Full Idea: It might be thought at first that the empty set would be a rather useless or even frivolous set to mention, but from the empty set by various set-theoretic operations a surprising array of sets will be constructed.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:02)
     A reaction: This nicely sums up the ontological commitments of mathematics - that we will accept absolutely anything, as long as we can have some fun with it. Sets are an abstraction from reality, and the empty set is the very idea of that abstraction.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The singleton is defined using the pairing axiom (as {x,x}) [Enderton]
     Full Idea: Given any x we have the singleton {x}, which is defined by the pairing axiom to be {x,x}.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 2:19)
     A reaction: An interesting contrivance which is obviously aimed at keeping the axioms to a minimum. If you can do it intuitively with a new axiom, or unintuitively with an existing axiom - prefer the latter!
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
     Full Idea: An 'equivalence relation' is a binary relation which is reflexive, and symmetric, and transitive.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
     Full Idea: Equivalence classes will 'partition' a set. That is, it will divide it into distinct subsets, according to each relation on the set.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Fraenkel added Replacement, to give a theory of ordinal numbers [Enderton]
     Full Idea: It was observed by several people that for a satisfactory theory of ordinal numbers, Zermelo's axioms required strengthening. The Axiom of Replacement was proposed by Fraenkel and others, giving rise to the Zermelo-Fraenkel (ZF) axioms.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can only define functions if Choice tells us which items are involved [Enderton]
     Full Idea: For functions, we know that for any y there exists an appropriate x, but we can't yet form a function H, as we have no way of defining one particular choice of x. Hence we need the axiom of choice.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:48)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
     Full Idea: The process is dubbed 'conversational implicature' when the inference is not from the content of what has been said, but from the fact that it has been said.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7.3)
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
     Full Idea: The point of logic is to give an account of the notion of validity,..in two standard ways: the semantic way says that a valid inference preserves truth (symbol |=), and the proof-theoretic way is defined in terms of purely formal procedures (symbol |-).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.3..)
     A reaction: This division can be mirrored in mathematics, where it is either to do with counting or theorising about things in the physical world, or following sets of rules from axioms. Language can discuss reality, or play word-games.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / a. Descriptions
Indefinite descriptions are quantificational in subject position, but not in predicate position [Soames]
     Full Idea: The indefinite description in 'A man will meet you' is naturally treated as quantificational, but an occurrence in predicative position, in 'Jones is not a philosopher', doesn't have a natural quantificational counterpart.
     From: Scott Soames (Philosophy of Language [2010], 1.23)
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Recognising the definite description 'the man' as a quantifier phrase, not a singular term, is a real insight [Soames]
     Full Idea: Recognising the definite description 'the man' as a quantifier phrase, rather than a singular term, is a real insight.
     From: Scott Soames (Philosophy of Language [2010], 1.22)
     A reaction: 'Would the man who threw the stone come forward' seems like a different usage from 'would the man in the black hat come forward'.
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
The universal and existential quantifiers were chosen to suit mathematics [Soames]
     Full Idea: Since Frege and Russell were mainly interested in formalizing mathematics, the only quantifiers they needed were the universal and existential one.
     From: Scott Soames (Philosophy of Language [2010], 1.22)
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth or tautology is a logical consequence of the empty set [Enderton]
     Full Idea: A is a logical truth (tautology) (|= A) iff it is a semantic consequence of the empty set of premises (φ |= A), that is, every interpretation makes A true.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.3.4)
     A reaction: So the final column of every line of the truth table will be T.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
     Full Idea: A truth assignment 'satisfies' a formula, or set of formulae, if it evaluates as True when all of its components have been assigned truth values.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.2)
     A reaction: [very roughly what Enderton says!] The concept becomes most significant when a large set of wff's is pronounced 'satisfied' after a truth assignment leads to them all being true.
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
     Full Idea: If every proof-theoretically valid inference is semantically valid (so that |- entails |=), the proof theory is said to be 'sound'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
     Full Idea: If every semantically valid inference is proof-theoretically valid (so that |= entails |-), the proof-theory is said to be 'complete'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
     Full Idea: If a wff is tautologically implied by a set of wff's, it is implied by a finite subset of them; and if every finite subset is satisfiable, then so is the whole set of wff's.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: [Enderton's account is more symbolic] He adds that this also applies to models. It is a 'theorem' because it can be proved. It is a major theorem in logic, because it brings the infinite under control, and who doesn't want that?
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
     Full Idea: A set of expressions is 'decidable' iff there exists an effective procedure (qv) that, given some expression, will decide whether or not the expression is included in the set (i.e. doesn't contradict it).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7)
     A reaction: This is obviously a highly desirable feature for a really reliable system of expressions to possess. All finite sets are decidable, but some infinite sets are not.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
     Full Idea: The Enumerability Theorem says that for a reasonable language, the set of valid wff's can be effectively enumerated.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: There are criteria for what makes a 'reasonable' language (probably specified to ensure enumerability!). Predicates and functions must be decidable, and the language must be finite.
9. Objects / D. Essence of Objects / 7. Essence and Necessity / a. Essence as necessary properties
Kripkean essential properties and relations are necessary, in all genuinely possible worlds [Soames]
     Full Idea: By (Kripkean) 'essential' properties and relations I mean simply properties and relations that hold necessarily of objects (in all genuinely possible world-states in which the objects exist).
     From: Scott Soames (Significance of the Kripkean Nec A Posteriori [2006], p.168 n5)
     A reaction: This is the standard modern view of essences which I find so unsatisfactory. Kit Fine has helped to take us back to the proper Aristotelian view, where 'necessary' and 'essential' actually have different meanings. Note the inclusion of relations.
10. Modality / A. Necessity / 5. Metaphysical Necessity
We understand metaphysical necessity intuitively, from ordinary life [Soames]
     Full Idea: Our understanding of metaphysical necessity is intuitive - drawn from our ordinary thought and talk.
     From: Scott Soames (Philosophy of Language [2010], 3.1)
     A reaction: This, of course, is a good reason for analytic philosophers to dislike metaphysical necessity.
There are more metaphysically than logically necessary truths [Soames]
     Full Idea: The set of metaphysically necessary truths is larger than the set of logically necessary truths.
     From: Scott Soames (Philosophy of Language [2010], 3.1)
     A reaction: Likewise, the set of logically possible truths is much larger than the set of metaphysically possible truths. If a truth is logically necessary, it will clearly be metaphysically necessary. Er, unless it is necessitated by daft logic...
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
     Full Idea: Not all sentences using 'if' are conditionals. Consider 'if you want a banana, there is one in the kitchen'. The rough test is that a conditional can be rewritten as 'that A implies that B'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.6.4)
10. Modality / C. Sources of Modality / 3. Necessity by Convention
A key achievement of Kripke is showing that important modalities are not linguistic in source [Soames]
     Full Idea: None of Kripke's many achievements is more important than his breaking the spell of the linguistic as the source of philosophically important modalities.
     From: Scott Soames (Significance of the Kripkean Nec A Posteriori [2006], p.186)
     A reaction: Put like that, Kripke may have had the single most important thought of modern times. I take good philosophy to be exactly the same as good scientific theorising, in that it all arises out of the nature of reality (and I include logic in that).
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / a. Nature of possible worlds
Kripkean possible worlds are abstract maximal states in which the real world could have been [Soames]
     Full Idea: For the Kripkean possible states of the world are not alternate concrete universes, but abstract objects. Metaphysically possible world-states are maximally complete ways the real concrete universe could have been.
     From: Scott Soames (Significance of the Kripkean Nec A Posteriori [2006], p.167)
     A reaction: This is probably clearer about the Kripkean view than Kripke ever is, but then that is part of Soames's mission. It sounds like the right way to conceive possible worlds. At least there is some commitment there, rather than instrumentalism about them.
19. Language / A. Nature of Meaning / 4. Meaning as Truth-Conditions
To study meaning, study truth conditions, on the basis of syntax, and representation by the parts [Soames]
     Full Idea: The systematic study of meaning requires a framework for specifying the truth conditions of sentences on the basis of their syntactic structure, and the representational contents of their parts.
     From: Scott Soames (Philosophy of Language [2010], Intro)
     A reaction: Soames presents this as common sense, on the first page of his book, and it is hard to disagree. Representation will shade off into studying the workings of the mind. Fodor seems a good person to start with.
Tarski's account of truth-conditions is too weak to determine meanings [Soames]
     Full Idea: The truth conditions provided by Tarski's theories (based on references of subsentential constituents) are too weak to determine meanings, because they lacked context-sensitivity and various forms of intensionality.
     From: Scott Soames (Philosophy of Language [2010], Intro)
     A reaction: Interesting. This suggests that stronger modern axiomatic theories of truth might give a sufficient basis for a truth conditions theory of meaning. Soames says possible worlds semantics was an attempt to improve things.
19. Language / C. Assigning Meanings / 2. Semantics
Semantics as theory of meaning and semantics as truth-based logical consequence are very different [Soames]
     Full Idea: There are two senses of 'semantic' - as theory of meaning or as truth-based theory of logical consequence, and they are very different.
     From: Scott Soames (Why Propositions Aren't Truth-Supporting Circumstance [2008], p.78)
     A reaction: This subtle point is significant in considering the role of logic in philosophy. The logicians' semantics (based on logical consequence) is in danger of ousting the broader and more elusive notion of meaning in natural language.
19. Language / C. Assigning Meanings / 6. Truth-Conditions Semantics
Semantic content is a proposition made of sentence constituents (not some set of circumstances) [Soames]
     Full Idea: The semantic content of a sentence is not the set of circumstances supporting its truth. It is rather the semantic content of a structured proposition the constituents of which are the semantic contents of the constituents of the sentence.
     From: Scott Soames (Why Propositions Aren't Truth-Supporting Circumstance [2008], p.74)
     A reaction: I'm not sure I get this, but while I like the truth-conditions view, I am suspicious of any proposal that the semantic content of something is some actual physical ingredients of the world. Meanings aren't sticks and stones.
19. Language / C. Assigning Meanings / 10. Two-Dimensional Semantics
Two-dimensionalism reinstates descriptivism, and reconnects necessity and apriority to analyticity [Soames]
     Full Idea: Two-dimensionalism is a fundamentally anti-Kripkean attempt to reinstate descriptivism about names and natural kind terms, to reconnect necessity and apriority to analyticity, and return philosophy to analytic paradigms of its golden age.
     From: Scott Soames (Significance of the Kripkean Nec A Posteriori [2006], p.183)
     A reaction: I presume this is right, and it is so frustrating that you need Soames to spell it out, when Chalmers is much more low-key. Philosophers hate telling you what their real game is. Why is that?
19. Language / D. Propositions / 4. Mental Propositions
We should use cognitive states to explain representational propositions, not vice versa [Soames]
     Full Idea: Instead of explaining the representationality of sentences and cognitive states in terms of propositions, we must explain the representationality of propositions in terms of the representationality of the relevant cognitive states.
     From: Scott Soames (Philosophy of Language [2010], Intro)
     A reaction: Music to my ears. I am bewildered by this Russellian notion of a 'proposition' as some abstract entity floating around in the world waiting to be expressed. The vaguer word 'facts' (and false facts?) will cover that. It's Frege's fault.
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]
     Full Idea: The Egyptians were the first to claim that the soul of a human being is immortal, and that each time the body dies the soul enters another creature just as it is being born.
     From: Herodotus (The Histories [c.435 BCE], 2.123.2)