Combining Philosophers

All the ideas for Herodotus, St Paul and Kenneth Kunen

unexpand these ideas     |    start again     |     specify just one area for these philosophers


19 ideas

1. Philosophy / D. Nature of Philosophy / 7. Despair over Philosophy
Beware lest any man spoil you through philosophy [Paul]
     Full Idea: Beware lest any man spoil you through philosophy.
     From: St Paul (12: Colossians [c.55], 2.8)
     A reaction: The same might be said of preaching. The two sorts of spoiling seem to be fanaticism and wickedness. While reason can lead to fanaticism, I believe (with Socrates) that it is unlikely to corrupt morally.
Don't be tossed to and fro with every wind of doctrine, by cunning deceptive men [Paul]
     Full Idea: Henceforth be no more children, tossed to and fro, and carried about with every wind of doctrine, by the sleight of men, and cunning craftiness, whereby they lie in wait to deceive.
     From: St Paul (10: Ephesians [c.55], 4:14)
     A reaction: One quoted to me by a learned religious friend, in response to Idea 23767. I sympathise. I find it extraordinary the nonsense that students of philosophy can be led into, when they swallow some specious argument.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y) [Kunen]
     Full Idea: Axiom of Extensionality: ∀x ∀y (∀z (z ∈ x ↔ z ∈ y) → x = y). That is, a set is determined by its members. If every z in one set is also in the other set, then the two sets are the same.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z) [Kunen]
     Full Idea: Axiom of Pairing: ∀x ∀y ∃z (x ∈ z ∧ y ∈ z). Any pair of entities must form a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
     A reaction: Repeated applications of this can build the hierarchy of sets.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A) [Kunen]
     Full Idea: Axiom of Union: ∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A). That is, the union of a set (all the members of the members of the set) must also be a set.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x) [Kunen]
     Full Idea: Axiom of Infinity: ∃x (0 ∈ x ∧ ∀y ∈ x (S(y) ∈ x). That is, there is a set which contains zero and all of its successors, hence all the natural numbers. The principal of induction rests on this axiom.
     From: Kenneth Kunen (Set Theory [1980], §1.7)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Power Set: ∀x ∃y ∀z(z ⊂ x → z ∈ y) [Kunen]
     Full Idea: Power Set Axiom: ∀x ∃y ∀z(z ⊂ x → z ∈ y). That is, there is a set y which contains all of the subsets of a given set. Hence we define P(x) = {z : z ⊂ x}.
     From: Kenneth Kunen (Set Theory [1980], §1.10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement: ∀x∈A ∃!y φ(x,y) → ∃Y ∀X∈A ∃y∈Y φ(x,y) [Kunen]
     Full Idea: Axiom of Replacement Scheme: ∀x ∈ A ∃!y φ(x,y) → ∃Y ∀X ∈ A ∃y ∈ Y φ(x,y). That is, any function from a set A will produce another set Y.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation:∀x(∃y(y∈x) → ∃y(y∈x ∧ ¬∃z(z∈x ∧ z∈y))) [Kunen]
     Full Idea: Axiom of Foundation: ∀x (∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))). Aka the 'Axiom of Regularity'. Combined with Choice, it means there are no downward infinite chains.
     From: Kenneth Kunen (Set Theory [1980], §3.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: ∀A ∃R (R well-orders A) [Kunen]
     Full Idea: Axiom of Choice: ∀A ∃R (R well-orders A). That is, for every set, there must exist another set which imposes a well-ordering on it. There are many equivalent versions. It is not needed in elementary parts of set theory.
     From: Kenneth Kunen (Set Theory [1980], §1.6)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Set Existence: ∃x (x = x) [Kunen]
     Full Idea: Axiom of Set Existence: ∃x (x = x). This says our universe is non-void. Under most developments of formal logic, this is derivable from the logical axioms and thus redundant, but we do so for emphasis.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ) [Kunen]
     Full Idea: Comprehension Scheme: for each formula φ without y free, the universal closure of this is an axiom: ∃y ∀x (x ∈ y ↔ x ∈ z ∧ φ). That is, there must be a set y if it can be defined by the formula φ.
     From: Kenneth Kunen (Set Theory [1980], §1.5)
     A reaction: Unrestricted comprehension leads to Russell's paradox, so restricting it in some way (e.g. by the Axiom of Specification) is essential.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Constructibility: V = L (all sets are constructible) [Kunen]
     Full Idea: Axiom of Constructability: this is the statement V = L (i.e. ∀x ∃α(x ∈ L(α)). That is, the universe of well-founded von Neumann sets is the same as the universe of sets which are actually constructible. A possible axiom.
     From: Kenneth Kunen (Set Theory [1980], §6.3)
8. Modes of Existence / A. Relations / 4. Formal Relations / b. Equivalence relation
An 'equivalence' relation is one which is reflexive, symmetric and transitive [Kunen]
     Full Idea: R is an equivalence relation on A iff R is reflexive, symmetric and transitive on A.
     From: Kenneth Kunen (The Foundations of Mathematics (2nd ed) [2012], I.7.1)
12. Knowledge Sources / A. A Priori Knowledge / 3. Innate Knowledge / a. Innate knowledge
When Gentiles follow the law, they must have the law written in their hearts [Paul]
     Full Idea: When the Gentiles which have not the law, do by nature the things contained in the law, these, having not the law, are a law unto themselves, which shew the works of the law written in their hearts, their conscience also bearing witness.
     From: St Paul (06: Epistle to the Romans [c.55], 02.15)
     A reaction: This passage was used by theologians as proof of innate ideas, which are, of course, divinely implanted (in the guise of doing things 'by nature'). It is quoted by Leibniz. Thus Christians annexed credit for pagan morality to God.
24. Political Theory / D. Ideologies / 10. Theocracy
Power is ordained by God, so anyone who resists power resists God, and will be damned [Paul]
     Full Idea: Let every soul be subject unto the higher powers. For there is no power but of God: the powers that be are ordained by God. Whosoever therefore resisteth the power resisteth the ordinance of God: and they that resist shall receive to themselves damnation.
     From: St Paul (06: Epistle to the Romans [c.55], 13:1-2)
     A reaction: This notorious passage was used to justify the Divine Right of Kings in England in the seventeenth century. It strikes me as being utterly preposterous, though you might say that violent resistance to an evil dictator only brings worse evil.
25. Social Practice / B. Equalities / 1. Grounds of equality
Jew and Greeks, bond and free, male and female, are all one in Christ [Paul]
     Full Idea: There is neither Jew nor Greek, there is neither bond nor free, there is neither male nor female; for ye are all one in Christ Jesus.
     From: St Paul (09: Galatians [c.55], 3.28)
     A reaction: No wonder women and slaves were enthusiastic about Christianity. This verse is powerful and influential, even if it was largely ignored by Christian rulers. Consider the relative positions of women in Islam and Christendom.
28. God / B. Proving God / 3. Proofs of Evidence / b. Teleological Proof
God's eternal power and deity are clearly seen in what has been created [Paul]
     Full Idea: From the creation of the world God's invisible nature, namely his eternal power and deity, are clearly perceived in the things that have been made.
     From: St Paul (06: Romans [c.55], 19-21), quoted by Brian Davies - Introduction to the Philosophy of Religion
     A reaction: St Paul says that for this reason the Gentiles are 'without excuse' for not believing (which means they are in trouble if Christians ever gain political power). Davies says it is unusual to find an argument for God's existence in the Bible.
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]
     Full Idea: The Egyptians were the first to claim that the soul of a human being is immortal, and that each time the body dies the soul enters another creature just as it is being born.
     From: Herodotus (The Histories [c.435 BCE], 2.123.2)