Combining Philosophers

All the ideas for Herodotus, Vann McGee and Mark Colyvan

unexpand these ideas     |    start again     |     specify just one area for these philosophers


30 ideas

4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
     Full Idea: In intuitionist logic double negation elimination fails. After all, proving that there is no proof that there can't be a proof of S is not the same thing as having a proof of S.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: I do like people like Colyvan who explain things clearly. All of this difficult stuff is understandable, if only someone makes the effort to explain it properly.
Rejecting double negation elimination undermines reductio proofs [Colyvan]
     Full Idea: The intuitionist rejection of double negation elimination undermines the important reductio ad absurdum proof in classical mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Validity is explained as truth in all models, because that relies on the logical terms [McGee]
     Full Idea: A model of a language assigns values to non-logical terms. If a sentence is true in every model, its truth doesn't depend on those non-logical terms. Hence the validity of an argument comes from its logical form. Thus models explain logical validity.
     From: Vann McGee (Logical Consequence [2014], 4)
     A reaction: [compressed] Thus you get a rigorous account of logical validity by only allowing the rigorous input of model theory. This is the modern strategy of analytic philosophy. But is 'it's red so it's coloured' logically valid?
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
     Full Idea: The law of excluded middle (for every proposition P, either P or not-P) must be carefully distinguished from its semantic counterpart bivalence, that every proposition is either true or false.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: So excluded middle makes no reference to the actual truth or falsity of P. It merely says P excludes not-P, and vice versa.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Natural language includes connectives like 'because' which are not truth-functional [McGee]
     Full Idea: Natural language includes connectives that are not truth-functional. In order for 'p because q' to be true, both p and q have to be true, but knowing the simpler sentences are true doesn't determine whether the larger sentence is true.
     From: Vann McGee (Logical Consequence [2014], 2)
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables need to range over more than collections of first-order objects [McGee]
     Full Idea: To get any advantage from moving to second-order logic, we need to assign to second-order variables a role different from merely ranging over collections made up of things the first-order variables range over.
     From: Vann McGee (Logical Consequence [2014], 7)
     A reaction: Thus it is exciting if they range over genuine properties, but not so exciting if you merely characterise those properties as sets of first-order objects. This idea leads into a discussion of plural quantification.
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
An ontologically secure semantics for predicate calculus relies on sets [McGee]
     Full Idea: We can get a less ontologically perilous presentation of the semantics of the predicate calculus by using sets instead of concepts.
     From: Vann McGee (Logical Consequence [2014], 4)
     A reaction: The perilous versions rely on Fregean concepts, and notably Russell's 'concept that does not fall under itself'. The sets, of course, have to be ontologically secure, and so will involve the iterative conception, rather than naive set theory.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logically valid sentences are analytic truths which are just true because of their logical words [McGee]
     Full Idea: Logically valid sentences are a species of analytic sentence, being true not just in virtue of the meanings of their words, but true in virtue of the meanings of their logical words.
     From: Vann McGee (Logical Consequence [2014], 4)
     A reaction: A helpful link between logical truths and analytic truths, which had not struck me before.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
     Full Idea: A set of axioms is said to be 'categorical' if all models of the axioms in question are isomorphic.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
     A reaction: The best example is the Peano Axioms, which are 'true up to isomorphism'. Set theory axioms are only 'quasi-isomorphic'.
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness theorems are uninformative, because they rely on soundness in their proofs [McGee]
     Full Idea: Soundness theorems are seldom very informative, since typically we use informally, in proving the theorem, the very same rules whose soundness we are attempting to establish.
     From: Vann McGee (Logical Consequence [2014], 5)
     A reaction: [He cites Quine 1935]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
     Full Idea: Ordinal numbers represent order relations.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.2.3 n17)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
     Full Idea: For intuitionists, all but the smallest, most well-behaved infinities are rejected.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: The intuitionist idea is to only accept what can be clearly constructed or proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
     Full Idea: The problem with infinitesimals is that in some places they behaved like real numbers close to zero but in other places they behaved like zero.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.2)
     A reaction: Colyvan gives an example, of differentiating a polynomial.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
     Full Idea: Given Dedekind's reduction of real numbers to sequences of rational numbers, and other known reductions in mathematics, it was tempting to see basic arithmetic as the foundation of mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.1)
     A reaction: The reduction is the famous Dedekind 'cut'. Nowadays theorists seem to be more abstract (Category Theory, for example) instead of reductionist.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
The culmination of Euclidean geometry was axioms that made all models isomorphic [McGee]
     Full Idea: One of the culminating achievements of Euclidean geometry was categorical axiomatisations, that describe the geometric structure so completely that any two models of the axioms are isomorphic. The axioms are second-order.
     From: Vann McGee (Logical Consequence [2014], 7)
     A reaction: [He cites Veblen 1904 and Hilbert 1903] For most mathematicians, categorical axiomatisation is the best you can ever dream of (rather than a single true axiomatisation).
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
     Full Idea: Transfinite inductions are inductive proofs that include an extra step to show that if the statement holds for all cases less than some limit ordinal, the statement also holds for the limit ordinal.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1 n11)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
     Full Idea: Most mathematical proofs, outside of set theory, do not explicitly state the set theory being employed.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
     Full Idea: Structuralism is able to explain why mathematicians are typically only interested in describing the objects they study up to isomorphism - for that is all there is to describe.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
     Full Idea: In re structuralism does not posit anything other than the kinds of structures that are in fact found in the world. ...The problem is that the world may not provide rich enough structures for the mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
     A reaction: You can perceive a repeating pattern in the world, without any interest in how far the repetitions extend.
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
     Full Idea: Those who see probabilities as ratios of frequencies can't use Bayes's Theorem if there is no objective prior probability. Those who accept prior probabilities tend to opt for a subjectivist account, where probabilities are degrees of belief.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.8)
     A reaction: [compressed]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
     Full Idea: Mathematics can demonstrate structural similarities between systems (e.g. missing population periods and the gaps in the rings of Saturn).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
     A reaction: [Colyvan expounds the details of his two examples] It is these sorts of results that get people enthusiastic about the mathematics embedded in nature. A misunderstanding, I think.
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
     Full Idea: Mathematics can show that under a broad range of conditions, something initially surprising must occur (e.g. the hexagonal structure of honeycomb).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Reductio proofs do not seem to be very explanatory [Colyvan]
     Full Idea: One kind of proof that is thought to be unexplanatory is the 'reductio' proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: Presumably you generate a contradiction, but are given no indication of why the contradiction has arisen? Tracking back might reveal the source of the problem? Colyvan thinks reductio can be explanatory.
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
     Full Idea: It might be argued that any proof by induction is revealing the explanation of the theorem, namely, that it holds by virtue of the structure of the natural numbers.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: This is because induction characterises the natural numbers, in the Peano Axioms.
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
     Full Idea: The proof of the four-colour theorem raises questions about whether a 'proof' that no one understands is a proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.6)
     A reaction: The point is that the theorem (that you can colour countries on a map with just four colours) was proved with the help of a computer.
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
     Full Idea: Another style of proof often cited as unexplanatory are brute-force methods such as proof by cases (or proof by exhaustion).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
     Full Idea: One type of generalisation in mathematics extends a system to go beyond what is was originally set up for; another kind involves abstracting away from some details in order to capture similarities between different systems.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.2)
19. Language / F. Communication / 2. Assertion
A maxim claims that if we are allowed to assert a sentence, that means it must be true [McGee]
     Full Idea: If our linguistic conventions entitle us to assert a sentence, they thereby make it true, because of the maxim that 'truth is the norm of assertion'.
     From: Vann McGee (Logical Consequence [2014], 8)
     A reaction: You could only really deny that maxim if you had no belief at all in truth, but then you can assert anything you like (with full entitlement). Maybe you can assert anything you like as long as it doesn't upset anyone? Etc.
29. Religion / D. Religious Issues / 2. Immortality / a. Immortality
The Egyptians were the first to say the soul is immortal and reincarnated [Herodotus]
     Full Idea: The Egyptians were the first to claim that the soul of a human being is immortal, and that each time the body dies the soul enters another creature just as it is being born.
     From: Herodotus (The Histories [c.435 BCE], 2.123.2)