Combining Philosophers

All the ideas for Hesiod, Alex Orenstein and Graham Priest

unexpand these ideas     |    start again     |     specify just one area for these philosophers


52 ideas

2. Reason / B. Laws of Thought / 3. Non-Contradiction
Someone standing in a doorway seems to be both in and not-in the room [Priest,G, by Sorensen]
     Full Idea: Priest says there is room for contradictions. He gives the example of someone in a doorway; is he in or out of the room. Given that in and out are mutually exclusive and exhaustive, and neither is the default, he seems to be both in and not in.
     From: report of Graham Priest (What is so bad about Contradictions? [1998]) by Roy Sorensen - Vagueness and Contradiction 4.3
     A reaction: Priest is a clever lad, but I don't think I can go with this. It just seems to be an equivocation on the word 'in' when applied to rooms. First tell me the criteria for being 'in' a room. What is the proposition expressed in 'he is in the room'?
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Sentential logic is consistent (no contradictions) and complete (entirely provable) [Orenstein]
     Full Idea: Sentential logic has been proved consistent and complete; its consistency means that no contradictions can be derived, and its completeness assures us that every one of the logical truths can be proved.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: The situation for quantificational logic is not quite so clear (Orenstein p.98). I do not presume that being consistent and complete makes it necessarily better as a tool in the real world.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axiomatization simply picks from among the true sentences a few to play a special role [Orenstein]
     Full Idea: In axiomatizing, we are merely sorting out among the truths of a science those which will play a special role, namely, serve as axioms from which we derive the others. The sentences are already true in a non-conventional or ordinary sense.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: If you were starting from scratch, as Euclidean geometers may have felt they were doing, you might want to decide which are the simplest truths. Axiomatizing an established system is a more advanced activity.
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
S4: 'poss that poss that p' implies 'poss that p'; S5: 'poss that nec that p' implies 'nec that p' [Orenstein]
     Full Idea: The five systems of propositional modal logic contain successively stronger conceptions of necessity. In S4 'it is poss that it is poss that p' implies 'it is poss that p'. In S5, 'it is poss that it is nec that p' implies 'it is nec that p'.
     From: Alex Orenstein (W.V. Quine [2002], Ch.7)
     A reaction: C.I. Lewis originated this stuff. Any serious student of modality is probably going to have to pick a system. E.g. Nathan Salmon says that the correct modal logic is even weaker than S4.
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
A logic is 'relevant' if premise and conclusion are connected, and 'paraconsistent' allows contradictions [Priest,G, by Friend]
     Full Idea: Priest and Routley have developed paraconsistent relevant logic. 'Relevant' logics insist on there being some sort of connection between the premises and the conclusion of an argument. 'Paraconsistent' logics allow contradictions.
     From: report of Graham Priest (works [1998]) by Michčle Friend - Introducing the Philosophy of Mathematics 6.8
     A reaction: Relevance blocks the move of saying that a falsehood implies everything, which sounds good. The offer of paraconsistency is very wicked indeed, and they are very naughty boys for even suggesting it.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
     Full Idea: Free logic is an unusual example of a non-classical logic which is first-order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], Pref)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
Unlike elementary logic, set theory is not complete [Orenstein]
     Full Idea: The incompleteness of set theory contrasts sharply with the completeness of elementary logic.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: This seems to be Quine's reason for abandoning the Frege-Russell logicist programme (quite apart from the problems raised by Gödel.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
     Full Idea: X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets, the set of all the n-tuples with its first member in X1, its second in X2, and so on.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.0)
<a,b&62; is a set whose members occur in the order shown [Priest,G]
     Full Idea: <a,b> is a set whose members occur in the order shown; <x1,x2,x3, ..xn> is an 'n-tuple' ordered set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
     Full Idea: a ∈ X means that a is a member of the set X, that is, a is one of the objects in X. a ∉ X indicates that a is not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
     Full Idea: {x; A(x)} indicates a set of objects which satisfy the condition A(x).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
     Full Idea: {a1, a2, ...an} indicates that the set comprises of just those objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
Φ indicates the empty set, which has no members [Priest,G]
     Full Idea: Φ indicates the empty set, which has no members
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
     Full Idea: {a} is the 'singleton' set of a, not to be confused with the object a itself.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
     Full Idea: X⊂Y means set X is a 'proper subset' of set Y (if and only if all of its members are members of Y, but some things in Y are not in X)
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X⊆Y means set X is a 'subset' of set Y [Priest,G]
     Full Idea: X⊆Y means set X is a 'subset' of set Y (if and only if all of its members are members of Y).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X = Y means the set X equals the set Y [Priest,G]
     Full Idea: X = Y means the set X equals the set Y, which means they have the same members (i.e. X⊆Y and Y⊆X).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
     Full Idea: X ∩ Y indicates the 'intersection' of sets X and Y, which is a set containing just those things that are in both X and Y.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
     Full Idea: X ∪ Y indicates the 'union' of sets X and Y, which is a set containing just those things that are in X or Y (or both).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
     Full Idea: Y - X indicates the 'relative complement' of X with respect to Y, that is, all the things in Y that are not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'relative complement' is things in the second set not in the first [Priest,G]
     Full Idea: The 'relative complement' of one set with respect to another is the things in the second set that aren't in the first.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
     Full Idea: The 'intersection' of two sets is a set containing the things that are in both sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
     Full Idea: The 'union' of two sets is a set containing all the things in either of the sets
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
     Full Idea: The 'induction clause' says that whenever one constructs more complex formulas out of formulas that have the property P, the resulting formulas will also have that property.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.2)
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
     Full Idea: An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
     Full Idea: A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'set' is a collection of objects [Priest,G]
     Full Idea: A 'set' is a collection of objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
The 'empty set' or 'null set' has no members [Priest,G]
     Full Idea: The 'empty set' or 'null set' is a set with no members.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
     Full Idea: A set is a 'subset' of another set if all of its members are in that set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'proper subset' is smaller than the containing set [Priest,G]
     Full Idea: A set is a 'proper subset' of another set if some things in the large set are not in the smaller set
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'singleton' is a set with only one member [Priest,G]
     Full Idea: A 'singleton' is a set with only one member.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A 'member' of a set is one of the objects in the set [Priest,G]
     Full Idea: A 'member' of a set is one of the objects in the set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
     Full Idea: The empty set Φ is a subset of every set (including itself).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
4. Formal Logic / G. Formal Mereology / 1. Mereology
Mereology has been exploited by some nominalists to achieve the effects of set theory [Orenstein]
     Full Idea: The theory of mereology has had a history of being exploited by nominalists to achieve some of the effects of set theory.
     From: Alex Orenstein (W.V. Quine [2002], Ch.3)
     A reaction: Some writers refer to mereology as a 'theory', and others as an area of study. This appears to be an interesting line of investigation. Orenstein says Quine and Goodman showed its limitations.
5. Theory of Logic / G. Quantification / 1. Quantification
Traditionally, universal sentences had existential import, but were later treated as conditional claims [Orenstein]
     Full Idea: In traditional logic from Aristotle to Kant, universal sentences have existential import, but Brentano and Boole construed them as universal conditionals (such as 'for anything, if it is a man, then it is mortal').
     From: Alex Orenstein (W.V. Quine [2002], Ch.2)
     A reaction: I am sympathetic to the idea that even the 'existential' quantifier should be treated as conditional, or fictional. Modern Christians may well routinely quantify over angels, without actually being committed to them.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
The substitution view of quantification says a sentence is true when there is a substitution instance [Orenstein]
     Full Idea: The substitution view of quantification explains 'there-is-an-x-such-that x is a man' as true when it has a true substitution instance, as in the case of 'Socrates is a man', so the quantifier can be read as 'it is sometimes true that'.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: The word 'true' crops up twice here. The alternative (existential-referential) view cites objects, so the substitution view is a more linguistic approach.
5. Theory of Logic / L. Paradox / 1. Paradox
Typically, paradoxes are dealt with by dividing them into two groups, but the division is wrong [Priest,G]
     Full Idea: A natural principle is the same kind of paradox will have the same kind of solution. Standardly Ramsey's first group are solved by denying the existence of some totality, and the second group are less clear. But denial of the groups sink both.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §5)
     A reaction: [compressed] This sums up the argument of Priest's paper, which is that it is Ramsey's division into two kinds (see Idea 13334) which is preventing us from getting to grips with the paradoxes. Priest, notoriously, just lives with them.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / b. König's paradox
The 'least indefinable ordinal' is defined by that very phrase [Priest,G]
     Full Idea: König: there are indefinable ordinals, and the least indefinable ordinal has just been defined in that very phrase. (Recall that something is definable iff there is a (non-indexical) noun-phrase that refers to it).
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: Priest makes great subsequent use of this one, but it feels like a card trick. 'Everything indefinable has now been defined' (by the subject of this sentence)? König, of course, does manage to pick out one particular object.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
'x is a natural number definable in less than 19 words' leads to contradiction [Priest,G]
     Full Idea: Berry: if we take 'x is a natural number definable in less than 19 words', we can generate a number which is and is not one of these numbers.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: [not enough space to spell this one out in full]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / d. Richard's paradox
By diagonalization we can define a real number that isn't in the definable set of reals [Priest,G]
     Full Idea: Richard: φ(x) is 'x is a definable real number between 0 and 1' and ψ(x) is 'x is definable'. We can define a real by diagonalization so that it is not in x. It is and isn't in the set of reals.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: [this isn't fully clear here because it is compressed]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The least ordinal greater than the set of all ordinals is both one of them and not one of them [Priest,G]
     Full Idea: Burali-Forti: φ(x) is 'x is an ordinal', and so w is the set of all ordinals, On; δ(x) is the least ordinal greater than every member of x (abbreviation: log(x)). The contradiction is that log(On)∈On and log(On)∉On.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §2)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The next set up in the hierarchy of sets seems to be both a member and not a member of it [Priest,G]
     Full Idea: Mirimanoff: φ(x) is 'x is well founded', so that w is the cumulative hierarchy of sets, V; &delta(x) is just the power set of x, P(x). If x⊆V, then V∈V and V∉V, since δ(V) is just V itself.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §2)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you know that a sentence is not one of the known sentences, you know its truth [Priest,G]
     Full Idea: In the family of the Liar is the Knower Paradox, where φ(x) is 'x is known to be true', and there is a set of known things, Kn. By knowing a sentence is not in the known sentences, you know its truth.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §4)
     A reaction: [mostly my wording]
There are Liar Pairs, and Liar Chains, which fit the same pattern as the basic Liar [Priest,G]
     Full Idea: There are liar chains which fit the pattern of Transcendence and Closure, as can be seen with the simplest case of the Liar Pair.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §4)
     A reaction: [Priest gives full details] Priest's idea is that Closure is when a set is announced as complete, and Transcendence is when the set is forced to expand. He claims that the two keep coming into conflict.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The whole numbers are 'natural'; 'rational' numbers include fractions; the 'reals' include root-2 etc. [Orenstein]
     Full Idea: The 'natural' numbers are the whole numbers 1, 2, 3 and so on. The 'rational' numbers consist of the natural numbers plus the fractions. The 'real' numbers include the others, plus numbers such a pi and root-2, which cannot be expressed as fractions.
     From: Alex Orenstein (W.V. Quine [2002], Ch.2)
     A reaction: The 'irrational' numbers involved entities such as root-minus-1. Philosophical discussions in ontology tend to focus on the existence of the real numbers.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
The logicists held that is-a-member-of is a logical constant, making set theory part of logic [Orenstein]
     Full Idea: The question to be posed is whether is-a-member-of should be considered a logical constant, that is, does logic include set theory. Frege, Russell and Whitehead held that it did.
     From: Alex Orenstein (W.V. Quine [2002], Ch.5)
     A reaction: This is obviously the key element in the logicist programme. The objection seems to be that while first-order logic is consistent and complete, set theory is not at all like that, and so is part of a different world.
7. Existence / E. Categories / 3. Proposed Categories
Just individuals in Nominalism; add sets for Extensionalism; add properties, concepts etc for Intensionalism [Orenstein]
     Full Idea: Modest ontologies are Nominalism (Goodman), admitting only concrete individuals; and Extensionalism (Quine/Davidson) which admits individuals and sets; but Intensionalists (Frege/Carnap/Church/Marcus/Kripke) may have propositions, properties, concepts.
     From: Alex Orenstein (W.V. Quine [2002], Ch.3)
     A reaction: I don't like sets, because of Idea 7035. Even the ontology of individuals could collapse dramatically (see the ideas of Merricks, e.g. 6124). The intensional items may be real enough, but needn't have a place at the ontological high table.
14. Science / B. Scientific Theories / 1. Scientific Theory
The Principle of Conservatism says we should violate the minimum number of background beliefs [Orenstein]
     Full Idea: The principle of conservatism in choosing between theories is a maxim of minimal mutilation, stating that of competing theories, all other things being equal, choose the one that violates the fewest background beliefs held.
     From: Alex Orenstein (W.V. Quine [2002], Ch.2)
     A reaction: In this sense, all rational people should be conservatives. The idea is a modern variant of Hume's objection to miracles (Idea 2227). A Kuhnian 'paradigm shift' is the dramatic moment when this principle no longer seems appropriate.
19. Language / A. Nature of Meaning / 10. Denial of Meanings
People presume meanings exist because they confuse meaning and reference [Orenstein]
     Full Idea: A good part of the confidence people have that there are meanings rests on the confusion of meaning and reference.
     From: Alex Orenstein (W.V. Quine [2002], Ch.6)
     A reaction: An important point. Everyone assumes that sentences link to the world, but Frege shows that that is not part of meaning. Words like prepositions and conjunctions ('to', 'and') don't have 'a meaning' apart from their function and use.
19. Language / C. Assigning Meanings / 3. Predicates
Three ways for 'Socrates is human' to be true are nominalist, platonist, or Montague's way [Orenstein]
     Full Idea: 'Socrates is human' is true if 1) subject referent is identical with a predicate referent (Nominalism), 2) subject reference member of the predicate set, or the subject has that property (Platonism), 3) predicate set a member of the subject set (Montague)
     From: Alex Orenstein (W.V. Quine [2002], Ch.3)
     A reaction: Orenstein offers these as alternatives to Quine's 'inscrutability of reference' thesis, which makes the sense unanalysable.
19. Language / D. Propositions / 4. Mental Propositions
If two people believe the same proposition, this implies the existence of propositions [Orenstein]
     Full Idea: If we can say 'there exists a p such that John believes p and Barbara believes p', logical forms such as this are cited as evidence for our ontological commitment to propositions.
     From: Alex Orenstein (W.V. Quine [2002], Ch.7)
     A reaction: Opponents of propositions (such as Quine) will, of course, attempt to revise the logical form to eliminate the quantification over propositions. See Orenstein's outline on p.171.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
Unlike us, the early Greeks thought envy was a good thing, and hope a bad thing [Hesiod, by Nietzsche]
     Full Idea: Hesiod reckons envy among the effects of the good and benevolent Eris, and there was nothing offensive in according envy to the gods. ...Likewise the Greeks were different from us in their evaluation of hope: one felt it to be blind and malicious.
     From: report of Hesiod (works [c.700 BCE]) by Friedrich Nietzsche - Dawn (Daybreak) 038
     A reaction: Presumably this would be understandable envy, and unreasonable hope. Ridiculous envy can't possibly be good, and modest and sensible hope can't possibly be bad. I suspect he wants to exaggerate the relativism.