Combining Philosophers

All the ideas for Hesiod, Irving M. Copi and Charles Chihara

unexpand these ideas     |    start again     |     specify just one area for these philosophers


29 ideas

4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
We only know relational facts about the empty set, but nothing intrinsic [Chihara]
     Full Idea: Everything we know about the empty set is relational; we know that nothing is the membership relation to it. But what do we know about its 'intrinsic properties'?
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.5)
     A reaction: Set theory seems to depend on the concept of the empty set. Modern theorists seem over-influenced by the Quine-Putnam view, that if science needs it, we must commit ourselves to its existence.
In simple type theory there is a hierarchy of null sets [Chihara]
     Full Idea: In simple type theory, there is a null set of type 1, a null set of type 2, a null set of type 3..... (Quine has expressed his distaste for this).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 07.4)
     A reaction: It is bad enough trying to individuate the unique null set, without whole gangs of them drifting indistinguishably through the logical fog. All rational beings should share Quine's distaste, even if Quine is wrong.
Realists about sets say there exists a null set in the real world, with no members [Chihara]
     Full Idea: In the Gödelian realistic view of set theory the statement that there is a null set as the assertion of the existence in the real world of a set that has no members.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 11.6)
     A reaction: It seems to me obvious that such a claim is nonsense on stilts. 'In the beginning there was the null set'?
The null set is a structural position which has no other position in membership relation [Chihara]
     Full Idea: In the structuralist view of sets, in structures of a certain sort the null set is taken to be a position (or point) that will be such that no other position (or point) will be in the membership relation to it.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 11.6)
     A reaction: It would be hard to conceive of something having a place in a structure if nothing had a relation to it, so is the null set related to singeton sets but not there members. It will be hard to avoid Platonism here. Set theory needs the null set.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
What is special about Bill Clinton's unit set, in comparison with all the others? [Chihara]
     Full Idea: What is it about the intrinsic properties of just that one unit set in virtue of which Bill Clinton is related to just it and not to any other unit sets in the set-theoretical universe?
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.5)
     A reaction: If we all kept pet woodlice, we had better not hold a wood louse rally, or we might go home with the wrong one. My singleton seems seems remarkably like yours. Could we, perhaps, swap, just for a change?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
The set theorist cannot tell us what 'membership' is [Chihara]
     Full Idea: The set theorist cannot tell us anything about the true relationship of membership.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.5)
     A reaction: If three unrelated objects suddenly became members of a set, it is hard to see how the world would have changed, except in the minds of those thinking about it.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
ZFU refers to the physical world, when it talks of 'urelements' [Chihara]
     Full Idea: ZFU set theory talks about physical objects (the urelements), and hence is in some way about the physical world.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 11.5)
     A reaction: This sounds a bit surprising, given that the whole theory would appear to be quite unaffected if God announced that idealism is true and there are no physical objects.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Could we replace sets by the open sentences that define them? [Chihara, by Bostock]
     Full Idea: Chihara proposes to replace all sets by reference to the open sentences that define them.
     From: report of Charles Chihara (Ontology and the Vicious Circle Principle [1973]) by David Bostock - Philosophy of Mathematics 9.B.4
     A reaction: This depends on predicativism, because that stipulates the definitions will be available (cos if it ain't definable it ain't there). Chihara went on to define the open sentences in terms of the possibility of uttering them. Cf. propositional functions.
We could talk of open sentences, instead of sets [Chihara, by Shapiro]
     Full Idea: Chihara's programme is to replace talk of sets with talk of open sentences. Instead of speaking of the set of all cats, we talk about the open sentence 'x is a cat'.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Thinking About Mathematics 9.2
     A reaction: As Shapiro points out, this is following up Russell's view that sets should be replaced with talk of properties. Chihara is expressing it more linguistically. I'm in favour of any attempt to get rid of sets.
A pack of wolves doesn't cease when one member dies [Chihara]
     Full Idea: A pack of wolves is not thought to go out of existence just because some member of the pack is killed.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 07.5)
     A reaction: The point is that the formal extensional notion of a set doesn't correspond to our common sense notion of a group or class. Even a highly scientific theory about wolves needs a loose notion of a wolf pack.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
The mathematics of relations is entirely covered by ordered pairs [Chihara]
     Full Idea: Everything one needs to do with relations in mathematics can be done by taking a relation to be a set of ordered pairs. (Ordered triples etc. can be defined as order pairs, so that <x,y,z> is <x,<y,z>>).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 07.2)
     A reaction: How do we distinguish 'I own my cat' from 'I love my cat'? Or 'I quite like my cat' from 'I adore my cat'? Nevertheless, this is an interesting starting point for a discussion of relations.
5. Theory of Logic / K. Features of Logics / 2. Consistency
Sentences are consistent if they can all be true; for Frege it is that no contradiction can be deduced [Chihara]
     Full Idea: In first-order logic a set of sentences is 'consistent' iff there is an interpretation (or structure) in which the set of sentences is true. ..For Frege, though, a set of sentences is consistent if it is not possible to deduce a contradiction from it.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 02.1)
     A reaction: The first approach seems positive, the second negative. Frege seems to have a higher standard, which is appealing, but the first one seems intuitively right. There is a possible world where this could work.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Analytic geometry gave space a mathematical structure, which could then have axioms [Chihara]
     Full Idea: With the invention of analytic geometry (by Fermat and then Descartes) physical space could be represented as having a mathematical structure, which could eventually lead to its axiomatization (by Hilbert).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 02.3)
     A reaction: The idea that space might have axioms seems to be pythagoreanism run riot. I wonder if there is some flaw at the heart of Einstein's General Theory because of this?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
We can replace existence of sets with possibility of constructing token sentences [Chihara, by MacBride]
     Full Idea: Chihara's 'constructability theory' is nominalist - mathematics is reducible to a simple theory of types. Instead of talk of sets {x:x is F}, we talk of open sentences Fx defining them. Existence claims become constructability of sentence tokens.
     From: report of Charles Chihara (A Structural Account of Mathematics [2004]) by Fraser MacBride - Review of Chihara's 'Structural Acc of Maths' p.81
     A reaction: This seems to be approaching the problem in a Fregean way, by giving an account of the semantics. Chihara is trying to evade the Quinean idea that assertion is ontological commitment. But has Chihara retreated too far? How does he assert existence?
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Chihara's system is a variant of type theory, from which he can translate sentences [Chihara, by Shapiro]
     Full Idea: Chihara's system is a version of type theory. Translate thus: replace variables of sets of type n with level n variables over open sentences, replace membership/predication with satisfaction, and high quantifiers with constructability quantifiers.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Philosophy of Mathematics 7.4
We can replace type theory with open sentences and a constructibility quantifier [Chihara, by Shapiro]
     Full Idea: Chihara's system is similar to simple type theory; he replaces each type with variables over open sentences, replaces membership (or predication) with satisfaction, and replaces quantifiers over level 1+ variables with constructability quantifiers.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Thinking About Mathematics 9.2
     A reaction: This is interesting for showing that type theory may not be dead. The revival of supposedly dead theories is the bread-and-butter of modern philosophy.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Introduce a constructibility quantifiers (Cx)Φ - 'it is possible to construct an x such that Φ' [Chihara, by Shapiro]
     Full Idea: Chihara has proposal a modal primitive, a 'constructability quantifier'. Syntactically it behaves like an ordinary quantifier: Φ is a formula, and x a variable. Then (Cx)Φ is a formula, read as 'it is possible to construct an x such that Φ'.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Philosophy of Mathematics 7.4
     A reaction: We only think natural numbers are infinite because we see no barrier to continuing to count, i.e. to construct new numbers. We accept reals when we know how to construct them. Etc. Sounds promising to me (though not to Shapiro).
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
If a successful theory confirms mathematics, presumably a failed theory disconfirms it? [Chihara]
     Full Idea: If mathematics shares whatever confirmation accrues to the theories using it, would it not be reasonable to suppose that mathematics shares whatever disconfirmation accrues to the theories using it?
     From: Charles Chihara (A Structural Account of Mathematics [2004], 05.8)
     A reaction: Presumably Quine would bite the bullet here, although maths is much closer to the centre of his web of belief, and so far less likely to require adjustment. In practice, though, mathematics is not challenged whenever an experiment fails.
No scientific explanation would collapse if mathematical objects were shown not to exist [Chihara]
     Full Idea: Evidently, no scientific explanations of specific phenomena would collapse as a result of any hypothetical discovery that no mathematical objects exist.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 09.1)
     A reaction: It is inconceivable that anyone would challenge this claim. A good model seems to be drama; a play needs commitment from actors and audience, even when we know it is fiction. The point is that mathematics doesn't collapse either.
8. Modes of Existence / C. Powers and Dispositions / 6. Dispositions / b. Dispositions and powers
The real essence of a thing is its powers, or 'dispositional properties' [Copi]
     Full Idea: With respect to scientific usage, we can say that the real essence of a thing will consist very largely of powers or, in modern terms, dispositional properties.
     From: Irving M. Copi (Essence and Accident [1954], p.718)
     A reaction: Once again, Copi is a hero. I personally love the word 'powers' in metaphysics (and dislike the word 'properties', which is lost in a fog of confusion). See Molnar on 'powers' and Mumford on 'dispositions'.
9. Objects / D. Essence of Objects / 8. Essence as Explanatory
Essential properties are the 'deepest' ones which explain the others [Copi, by Rami]
     Full Idea: The 'explanatory characterization' says that the essential properties of an object are the object's deepest explanatory properties, which explain the other properties of the object - and which Copi claims is mind-independent.
     From: report of Irving M. Copi (Essence and Accident [1954]) by Adolph Rami - Essential vs Accidental Properties §2
     A reaction: It is, of course, normal to see a good explanation as being dependent on the interests of the audience. Perhaps this account should be in terms of causal powers. See Shoemaker on properties.
9. Objects / D. Essence of Objects / 13. Nominal Essence
In modern science, nominal essence is intended to be real essence [Copi]
     Full Idea: In the sphere of scientific enquiry the distinction between real and nominal essence tends to disappear; the scientist's classification of things is intended to be in terms of their real essences.
     From: Irving M. Copi (Essence and Accident [1954], p.716)
     A reaction: Thus we have disputes over what is the 'real' classification of natural kinds such as animals. There is not much point in a classification system that does not at least reflect some aspects of reality.
9. Objects / E. Objects over Time / 11. End of an Object
Within the four types of change, essential attributes are those whose loss means destruction [Copi]
     Full Idea: If we can distinguish the different kinds of change (alteration, locomotion, growth, diminution), then we can say that a given attribute is essential to an object if its loss would result in the destruction of that object.
     From: Irving M. Copi (Essence and Accident [1954], p.707-8)
     A reaction: As Copi is aware, this is a necessary condition for a property for essence, but not sufficient. If an attribute were necessary but non-essential, its loss would also be destruction. We say the essential attributes must also have some explanatory role.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
I prefer the open sentences of a Constructibility Theory, to Platonist ideas of 'equivalence classes' [Chihara]
     Full Idea: What I refer to as an 'equivalence class' (of line segments of a particular length) is an open sentence in my Constructibility Theory. I just use this terminology of the Platonist for didactic purposes.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 09.10)
     A reaction: This is because 'equivalence classes' is committed to the existence of classes, which is Quinean Platonism. I am with Chihara in wanting a story that avoids such things. Kit Fine is investigating similar notions of rules of construction.
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
Mathematical entities are causally inert, so the causal theory of reference won't work for them [Chihara]
     Full Idea: Causal theories of reference seem doomed to failure for the case of reference to mathematical entities, since such entities are evidently causally inert.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.3)
     A reaction: Presumably you could baptise a fictional entity such as 'Polonius', and initiate a social causal chain, with a tradition of reference. You could baptise a baby in absentia.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
Unlike us, the early Greeks thought envy was a good thing, and hope a bad thing [Hesiod, by Nietzsche]
     Full Idea: Hesiod reckons envy among the effects of the good and benevolent Eris, and there was nothing offensive in according envy to the gods. ...Likewise the Greeks were different from us in their evaluation of hope: one felt it to be blind and malicious.
     From: report of Hesiod (works [c.700 BCE]) by Friedrich Nietzsche - Dawn (Daybreak) 038
     A reaction: Presumably this would be understandable envy, and unreasonable hope. Ridiculous envy can't possibly be good, and modest and sensible hope can't possibly be bad. I suspect he wants to exaggerate the relativism.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / a. Scientific essentialism
Modern science seeks essences, and is getting closer to them [Copi]
     Full Idea: Modern science seeks to know the real essences of things, and its increasing successes seem to be bringing it progressively nearer to that goal.
     From: Irving M. Copi (Essence and Accident [1954], p.715)
     A reaction: This is from a notable pioneering paper, which outlined scientific essentialism even before Marcus and Kripke began to offer a modern account of essence to give it backing. Compare Popper, who thinks essences are will-o-the-wisps.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
Real essences are scientifically knowable, but so are non-essential properties [Copi]
     Full Idea: Contrary to Locke, I should hold that real essences are in principle knowable, and contrary to Aristotle, I should hold that non-essential or accidental properties can also be objects of scientific knowledge.
     From: Irving M. Copi (Essence and Accident [1954], p.717)
     A reaction: Copi has just become my hero. Aristotle's account of definition is on the brink of allowing fine-tuned essences, but he thinks universal understanding blocks knowledge of individuals. But cross-referencing of universals pinpoints individuals.
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
'Gunk' is an individual possessing no parts that are atoms [Chihara]
     Full Idea: An 'atomless gunk' is defined to be an individual possessing no parts that are atoms.
     From: Charles Chihara (A Structural Account of Mathematics [2004], App A)
     A reaction: [Lewis coined it] If you ask what are a-toms made of and what are ideas made of, the only answer we can offer is that the a-toms are made of gunk, and the ideas aren't made of anything, which is still bad news for the existence of ideas.