Combining Philosophers

All the ideas for Hesiod, John Richardson and Leslie H. Tharp

unexpand these ideas     |    start again     |     specify just one area for these philosophers


22 ideas

1. Philosophy / E. Nature of Metaphysics / 3. Metaphysical Systems
Metaphysics generalises the data, to get at the ontology [Richardson]
     Full Idea: The evidence lies at the periphery of the [metaphysical] system and runs in from there, through decreasingly specific accounts of the data, to the central ontology.
     From: John Richardson (Nietzsche's System [2002], Intro)
     A reaction: Philosophy is the study of high level generalisations, IMHO. Studying them means studying the reasons for asserting them. Richardson puts it very nicely.
Metaphysics aims at the essence of things, and a system to show how this explains other truths [Richardson]
     Full Idea: The core of metaphysics is an account of the 'essence' or 'being' of things. ...And metaphysics needs system, to show how these primary truths reach out into all the other truths, to help us see that, and how, they are true.
     From: John Richardson (Nietzsche's System [2002], Intro)
     A reaction: I like the phrase 'the essential nature' of things, because it doesn't invoke rather dodgy entities called 'essences', but everyone understands the idea of focusing on what is essential, and on things having a distinct 'nature'.
Metaphysics needs systems, because analysis just obsesses over details [Richardson]
     Full Idea: Metaphysics makes system a virtue, contrary to the tendency of analysis, which breaks a problem into ever finer parts and then absorbs itself in these.
     From: John Richardson (Nietzsche's System [2002], Intro)
     A reaction: I disagree, because it seems to rule out analytic metaphysics. I prefer Bertrand Russell's view. Admittedly analysis oftens gets stuck in the bog, especially if it hopes for salvation in logic, only to discover its certainties endlessly receding.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The axiom of choice now seems acceptable and obvious (if it is meaningful) [Tharp]
     Full Idea: The main objection to the axiom of choice was that it had to be given by some law or definition, but since sets are arbitrary this seems irrelevant. Formalists consider it meaningless, but set-theorists consider it as true, and practically obvious.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §3)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Logic is either for demonstration, or for characterizing structures [Tharp]
     Full Idea: One can distinguish at least two quite different senses of logic: as an instrument of demonstration, and perhaps as an instrument for the characterization of structures.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: This is trying to capture the proof-theory and semantic aspects, but merely 'characterizing' something sounds like a rather feeble aspiration for the semantic side of things. Isn't it to do with truth, rather than just rule-following?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Elementary logic is complete, but cannot capture mathematics [Tharp]
     Full Idea: Elementary logic cannot characterize the usual mathematical structures, but seems to be distinguished by its completeness.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic isn't provable, but will express set-theory and classic problems [Tharp]
     Full Idea: The expressive power of second-order logic is too great to admit a proof procedure, but is adequate to express set-theoretical statements, and open questions such as the continuum hypothesis or the existence of big cardinals are easily stated.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / b. Basic connectives
In sentential logic there is a simple proof that all truth functions can be reduced to 'not' and 'and' [Tharp]
     Full Idea: In sentential logic there is a simple proof that all truth functions, of any number of arguments, are definable from (say) 'not' and 'and'.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §0)
     A reaction: The point of 'say' is that it can be got down to two connectives, and these are just the usual preferred pair.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
The main quantifiers extend 'and' and 'or' to infinite domains [Tharp]
     Full Idea: The symbols ∀ and ∃ may, to start with, be regarded as extrapolations of the truth functional connectives ∧ ('and') and ∨ ('or') to infinite domains.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §5)
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
There are at least five unorthodox quantifiers that could be used [Tharp]
     Full Idea: One might add to one's logic an 'uncountable quantifier', or a 'Chang quantifier', or a 'two-argument quantifier', or 'Shelah's quantifier', or 'branching quantifiers'.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §3)
     A reaction: [compressed - just listed for reference, if you collect quantifiers, like collecting butterflies]
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The Löwenheim-Skolem property is a limitation (e.g. can't say there are uncountably many reals) [Tharp]
     Full Idea: The Löwenheim-Skolem property seems to be undesirable, in that it states a limitation concerning the distinctions the logic is capable of making, such as saying there are uncountably many reals ('Skolem's Paradox').
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
Skolem mistakenly inferred that Cantor's conceptions were illusory [Tharp]
     Full Idea: Skolem deduced from the Löwenheim-Skolem theorem that 'the absolutist conceptions of Cantor's theory' are 'illusory'. I think it is clear that this conclusion would not follow even if elementary logic were in some sense the true logic, as Skolem assumed.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §7)
     A reaction: [Tharp cites Skolem 1962 p.47] Kit Fine refers to accepters of this scepticism about the arithmetic of infinities as 'Skolemites'.
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness would seem to be an essential requirement of a proof procedure [Tharp]
     Full Idea: Soundness would seem to be an essential requirement of a proof procedure, since there is little point in proving formulas which may turn out to be false under some interpretation.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / K. Features of Logics / 4. Completeness
Completeness and compactness together give axiomatizability [Tharp]
     Full Idea: Putting completeness and compactness together, one has axiomatizability.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §1)
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
If completeness fails there is no algorithm to list the valid formulas [Tharp]
     Full Idea: In general, if completeness fails there is no algorithm to list the valid formulas.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: I.e. the theory is not effectively enumerable.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is important for major theories which have infinitely many axioms [Tharp]
     Full Idea: It is strange that compactness is often ignored in discussions of philosophy of logic, since the most important theories have infinitely many axioms.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: An example of infinite axioms is the induction schema in first-order Peano Arithmetic.
Compactness blocks infinite expansion, and admits non-standard models [Tharp]
     Full Idea: The compactness condition seems to state some weakness of the logic (as if it were futile to add infinitely many hypotheses). To look at it another way, formalizations of (say) arithmetic will admit of non-standard models.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A complete logic has an effective enumeration of the valid formulas [Tharp]
     Full Idea: A complete logic has an effective enumeration of the valid formulas.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
Effective enumeration might be proved but not specified, so it won't guarantee knowledge [Tharp]
     Full Idea: Despite completeness, the mere existence of an effective enumeration of the valid formulas will not, by itself, provide knowledge. For example, one might be able to prove that there is an effective enumeration, without being able to specify one.
     From: Leslie H. Tharp (Which Logic is the Right Logic? [1975], §2)
     A reaction: The point is that completeness is supposed to ensure knowledge (of what is valid but unprovable), and completeness entails effective enumerability, but more than the latter is needed to do the key job.
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
Unlike us, the early Greeks thought envy was a good thing, and hope a bad thing [Hesiod, by Nietzsche]
     Full Idea: Hesiod reckons envy among the effects of the good and benevolent Eris, and there was nothing offensive in according envy to the gods. ...Likewise the Greeks were different from us in their evaluation of hope: one felt it to be blind and malicious.
     From: report of Hesiod (works [c.700 BCE]) by Friedrich Nietzsche - Dawn (Daybreak) 038
     A reaction: Presumably this would be understandable envy, and unreasonable hope. Ridiculous envy can't possibly be good, and modest and sensible hope can't possibly be bad. I suspect he wants to exaggerate the relativism.
24. Political Theory / A. Basis of a State / 1. A People / a. Human distinctiveness
Humans dominate because, unlike other animals, they have a synthesis of conflicting drives [Richardson]
     Full Idea: In contrast to the other animals, man has cultivated an abundance of contrary drives and impulses within himself: thanks to this synthesis, he is master of the earth.
     From: John Richardson (Nietzsche's System [2002], §966)
     A reaction: If this is true, it presents the fundamental challenge of politicial philosophy - to visual a successful social system for a creature which does not have a clear and focused nature. For Nietzsche, this 'synthesis' continually evolves.
26. Natural Theory / C. Causation / 7. Eliminating causation
A mind that could see cause and effect as a continuum would deny cause and effect [Richardson]
     Full Idea: An intellect that could see cause and effect as a continuum and a flux, and not, as we do, in terms of an arbitrary division and dismemberment, would repudiate the concept of cause and effect.
     From: John Richardson (Nietzsche's System [2002], §112)
     A reaction: Maybe we do see it as a continuum? The racket swings and the ball is propelled, but the contact is a unity, not two separate events.