Combining Philosophers

All the ideas for Ian Hacking, Michael Bratman and Robert S. Wolf

unexpand these ideas     |    start again     |     specify just one area for these philosophers


42 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / b. Seventeenth century philosophy
Gassendi is the first great empiricist philosopher [Hacking]
     Full Idea: Gassendi is the first in the great line of empiricist philosophers that gradually came to dominate European thought.
     From: Ian Hacking (The Emergence of Probability [1975], Ch.5)
     A reaction: Epicurus, of course, was clearly an empiricist. British readers should note that Gassendi was not British.
2. Reason / D. Definition / 3. Types of Definition
A decent modern definition should always imply a semantics [Hacking]
     Full Idea: Today we expect that anything worth calling a definition should imply a semantics.
     From: Ian Hacking (What is Logic? [1979], §10)
     A reaction: He compares this with Gentzen 1935, who was attempting purely syntactic definitions of the logical connectives.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'tautology' must include connectives [Wolf,RS]
     Full Idea: 'For every number x, x = x' is not a tautology, because it includes no connectives.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.2)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
     Full Idea: Deduction Theorem: If T ∪ {P} |- Q, then T |- (P → Q). This is the formal justification of the method of conditional proof (CPP). Its converse holds, and is essentially modus ponens.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Thinning' ('dilution') is the key difference between deduction (which allows it) and induction [Hacking]
     Full Idea: 'Dilution' (or 'Thinning') provides an essential contrast between deductive and inductive reasoning; for the introduction of new premises may spoil an inductive inference.
     From: Ian Hacking (What is Logic? [1979], §06.2)
     A reaction: That is, inductive logic (if there is such a thing) is clearly non-monotonic, whereas classical inductive logic is monotonic.
Gentzen's Cut Rule (or transitivity of deduction) is 'If A |- B and B |- C, then A |- C' [Hacking]
     Full Idea: If A |- B and B |- C, then A |- C. This generalises to: If Γ|-A,Θ and Γ,A |- Θ, then Γ |- Θ. Gentzen called this 'cut'. It is the transitivity of a deduction.
     From: Ian Hacking (What is Logic? [1979], §06.3)
     A reaction: I read the generalisation as 'If A can be either a premise or a conclusion, you can bypass it'. The first version is just transitivity (which by-passes the middle step).
Only Cut reduces complexity, so logic is constructive without it, and it can be dispensed with [Hacking]
     Full Idea: Only the cut rule can have a conclusion that is less complex than its premises. Hence when cut is not used, a derivation is quite literally constructive, building up from components. Any theorem obtained by cut can be obtained without it.
     From: Ian Hacking (What is Logic? [1979], §08)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
     Full Idea: Universal Generalization: If we can prove P(x), only assuming what sort of object x is, we may conclude ∀xP(x) for the same x.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
     A reaction: This principle needs watching closely. If you pick one person in London, with no presuppositions, and it happens to be a woman, can you conclude that all the people in London are women? Fine in logic and mathematics, suspect in life.
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
     Full Idea: Universal Specification: from ∀xP(x) we may conclude P(t), where t is an appropriate term. If something is true for all members of a domain, then it is true for some particular one that we specify.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
     Full Idea: Existential Generalization (or 'proof by example'): From P(t), where t is an appropriate term, we may conclude ∃xP(x).
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
     A reaction: It is amazing how often this vacuous-sounding principles finds itself being employed in discussions of ontology, but I don't quite understand why.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / e. Axiom of the Empty Set IV
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
     Full Idea: Empty Set Axiom: ∃x ∀y ¬ (y ∈ x). There is a set x which has no members (no y's). The empty set exists. There is a set with no members, and by extensionality this set is unique.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.3)
     A reaction: A bit bewildering for novices. It says there is a box with nothing in it, or a pair of curly brackets with nothing between them. It seems to be the key idea in set theory, because it asserts the idea of a set over and above any possible members.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
     Full Idea: The comprehension axiom says that any collection of objects that can be clearly specified can be considered to be a set.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.2)
     A reaction: This is virtually tautological, since I presume that 'clearly specified' means pinning down exact which items are the members, which is what a set is (by extensionality). The naïve version is, of course, not so hot.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
The various logics are abstractions made from terms like 'if...then' in English [Hacking]
     Full Idea: I don't believe English is by nature classical or intuitionistic etc. These are abstractions made by logicians. Logicians attend to numerous different objects that might be served by 'If...then', like material conditional, strict or relevant implication.
     From: Ian Hacking (What is Logic? [1979], §15)
     A reaction: The idea that they are 'abstractions' is close to my heart. Abstractions from what? Surely 'if...then' has a standard character when employed in normal conversation?
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is the strongest complete compact theory with Löwenheim-Skolem [Hacking]
     Full Idea: First-order logic is the strongest complete compact theory with a Löwenheim-Skolem theorem.
     From: Ian Hacking (What is Logic? [1979], §13)
A limitation of first-order logic is that it cannot handle branching quantifiers [Hacking]
     Full Idea: Henkin proved that there is no first-order treatment of branching quantifiers, which do not seem to involve any idea that is fundamentally different from ordinary quantification.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: See Hacking for an example of branching quantifiers. Hacking is impressed by this as a real limitation of the first-order logic which he generally favours.
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
     Full Idea: One of the most appealing features of first-order logic is that the two 'turnstiles' (the syntactic single |-, and the semantic double |=), which are the two reasonable notions of logical consequence, actually coincide.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: In the excitement about the possibility of second-order logic, plural quantification etc., it seems easy to forget the virtues of the basic system that is the target of the rebellion. The issue is how much can be 'expressed' in first-order logic.
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
     Full Idea: The 'completeness' of first order-logic does not mean that every sentence or its negation is provable in first-order logic. We have instead the weaker result that every valid sentence is provable.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: Peter Smith calls the stronger version 'negation completeness'.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order completeness seems to need intensional entities and possible worlds [Hacking]
     Full Idea: Second-order logic has no chance of a completeness theorem unless one ventures into intensional entities and possible worlds.
     From: Ian Hacking (What is Logic? [1979], §13)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
With a pure notion of truth and consequence, the meanings of connectives are fixed syntactically [Hacking]
     Full Idea: My doctrine is that the peculiarity of the logical constants resides precisely in that given a certain pure notion of truth and consequence, all the desirable semantic properties of the constants are determined by their syntactic properties.
     From: Ian Hacking (What is Logic? [1979], §09)
     A reaction: He opposes this to Peacocke 1976, who claims that the logical connectives are essentially semantic in character, concerned with the preservation of truth.
5. Theory of Logic / E. Structures of Logic / 4. Variables in Logic
Perhaps variables could be dispensed with, by arrows joining places in the scope of quantifiers [Hacking]
     Full Idea: For some purposes the variables of first-order logic can be regarded as prepositions and place-holders that could in principle be dispensed with, say by a system of arrows indicating what places fall in the scope of which quantifier.
     From: Ian Hacking (What is Logic? [1979], §11)
     A reaction: I tend to think of variables as either pronouns, or as definite descriptions, or as temporary names, but not as prepositions. Must address this new idea...
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory reveals the structures of mathematics [Wolf,RS]
     Full Idea: Model theory helps one to understand what it takes to specify a mathematical structure uniquely.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.1)
     A reaction: Thus it is the development of model theory which has led to the 'structuralist' view of mathematics.
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
     Full Idea: A 'structure' in model theory has a non-empty set, the 'universe', as domain of variables, a subset for each 'relation', some 'functions', and 'constants'.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.2)
Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
     Full Idea: Model theory uses set theory to show that the theorem-proving power of the usual methods of deduction in mathematics corresponds perfectly to what must be true in actual mathematical structures.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: That more or less says that model theory demonstrates the 'soundness' of mathematics (though normal arithmetic is famously not 'complete'). Of course, he says they 'correspond' to the truths, rather than entailing them.
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
     Full Idea: The three foundations of first-order model theory are the Completeness theorem, the Compactness theorem, and the Löwenheim-Skolem-Tarski theorem.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: On p.180 he notes that Compactness and LST make no mention of |- and are purely semantic, where Completeness shows the equivalence of |- and |=. All three fail for second-order logic (p.223).
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
     Full Idea: An 'isomorphism' is a bijection between two sets that preserves all structural components. The interpretations of each constant symbol are mapped across, and functions map the relation and function symbols.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.4)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]
     Full Idea: The Löwenheim-Skolem-Tarski theorem demonstrates a serious limitation of first-order logic, and is one of primary reasons for considering stronger logics.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.7)
If it is a logic, the Löwenheim-Skolem theorem holds for it [Hacking]
     Full Idea: A Löwenheim-Skolem theorem holds for anything which, on my delineation, is a logic.
     From: Ian Hacking (What is Logic? [1979], §13)
     A reaction: I take this to be an unusually conservative view. Shapiro is the chap who can give you an alternative view of these things, or Boolos.
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
     Full Idea: It is valuable to know that a theory is complete, because then we know it cannot be strengthened without passing to a more powerful language.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.5)
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
     Full Idea: Deductive logic, including first-order logic and other types of logic used in mathematics, is 'monotonic'. This means that we never retract a theorem on the basis of new givens. If T|-φ and T⊆SW, then S|-φ. Ordinary reasoning is nonmonotonic.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.7)
     A reaction: The classic example of nonmonotonic reasoning is the induction that 'all birds can fly', which is retracted when the bird turns out to be a penguin. He says nonmonotonic logic is a rich field in computer science.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
     Full Idea: Less theoretically, an ordinal is an equivalence class of well-orderings. Formally, we say a set is 'transitive' if every member of it is a subset of it, and an ordinal is a transitive set, all of whose members are transitive.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.4)
     A reaction: He glosses 'transitive' as 'every member of a member of it is a member of it'. So it's membership all the way down. This is the von Neumann rather than the Zermelo approach (which is based on singletons).
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Modern mathematics has unified all of its objects within set theory [Wolf,RS]
     Full Idea: One of the great achievements of modern mathematics has been the unification of its many types of objects. It began with showing geometric objects numerically or algebraically, and culminated with set theory representing all the normal objects.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: His use of the word 'object' begs all sorts of questions, if you are arriving from the street, where an object is something which can cause a bruise - but get used to it, because the word 'object' has been borrowed for new uses.
10. Modality / B. Possibility / 6. Probability
Probability was fully explained between 1654 and 1812 [Hacking]
     Full Idea: There is hardly any history of probability to record before Pascal (1654), and the whole subject is very well understood after Laplace (1812).
     From: Ian Hacking (The Emergence of Probability [1975], Ch.1)
     A reaction: An interesting little pointer on the question of whether the human race is close to exhausting all the available intellectual problems. What then?
Probability is statistical (behaviour of chance devices) or epistemological (belief based on evidence) [Hacking]
     Full Idea: Probability has two aspects: the degree of belief warranted by evidence, and the tendency displayed by some chance device to produce stable relative frequencies. These are the epistemological and statistical aspects of the subject.
     From: Ian Hacking (The Emergence of Probability [1975], Ch.1)
     A reaction: The most basic distinction in the subject. Later (p.124) he suggests that the statistical form (known as 'aleatory' probability) is de re, and the other is de dicto.
Epistemological probability based either on logical implications or coherent judgments [Hacking]
     Full Idea: Epistemological probability is torn between Keynes etc saying it depends on the strength of logical implication, and Ramsey etc saying it is personal judgement which is subject to strong rules of internal coherence.
     From: Ian Hacking (The Emergence of Probability [1975], Ch.2)
     A reaction: See Idea 7449 for epistemological probability. My immediate intuition is that the Ramsey approach sounds much more plausible. In real life there are too many fine-grained particulars involved for straight implication to settle a probability.
13. Knowledge Criteria / B. Internal Justification / 3. Evidentialism / a. Evidence
In the medieval view, only deduction counted as true evidence [Hacking]
     Full Idea: In the medieval view, evidence short of deduction was not really evidence at all.
     From: Ian Hacking (The Emergence of Probability [1975], Ch.3)
     A reaction: Hacking says the modern concept of evidence comes with probability in the 17th century. That might make it one of the most important ideas ever thought of, allowing us to abandon certainties and live our lives in a more questioning way.
Formerly evidence came from people; the new idea was that things provided evidence [Hacking]
     Full Idea: In the medieval view, people provided the evidence of testimony and of authority. What was lacking was the seventeenth century idea of the evidence provided by things.
     From: Ian Hacking (The Emergence of Probability [1975], Ch.4)
     A reaction: A most intriguing distinction, which seems to imply a huge shift in world-view. The culmination of this is Peirce's pragmatism, in Idea 6948, of which I strongly approve.
14. Science / A. Basis of Science / 3. Experiment
An experiment is a test, or an adventure, or a diagnosis, or a dissection [Hacking, by PG]
     Full Idea: An experiment is a test (if T, then E implies R, so try E, and if R follows, T seems right), an adventure (no theory, but try things), a diagnosis (reading the signs), or a dissection (taking apart).
     From: report of Ian Hacking (The Emergence of Probability [1975], Ch.4) by PG - Db (ideas)
     A reaction: A nice analysis. The Greeks did diagnosis, then the alchemists tried adventures, then Vesalius began dissections, then the followers of Bacon concentrated on the test, setting up controlled conditions. 'If you don't believe it, try it yourself'.
14. Science / D. Explanation / 2. Types of Explanation / a. Types of explanation
Follow maths for necessary truths, and jurisprudence for contingent truths [Hacking]
     Full Idea: Mathematics is the model for reasoning about necessary truths, but jurisprudence must be our model when we deliberate about contingencies.
     From: Ian Hacking (The Emergence of Probability [1975], Ch.10)
     A reaction: Interesting. Certainly huge thinking, especially since the Romans, has gone into the law, and creating rules of evidence. Maybe all philosophers should study law and mathematics?
20. Action / B. Preliminaries of Action / 1. Intention to Act / a. Nature of intentions
Intentions must be mutually consistent, affirm appropriate means, and fit the agent's beliefs [Bratman, by Wilson/Schpall]
     Full Idea: Bratman's three main norms of intention are 'internal consistency' (between a person's intentions), 'means-end coherence' (the means must fit the end), and 'consistency with the agent's beliefs' (especially intending to do and believing you won't do).
     From: report of Michael Bratman (Intention, Plans, and Practical Reason [1987]) by Wilson,G/Schpall,S - Action 4
     A reaction: These are controversial, but have set the agenda for modern non-reductive discussions of intention.
Intentions are normative, requiring commitment and further plans [Bratman, by Wilson/Schpall]
     Full Idea: Intentions involve normative commitments. We settle on intended courses, if there is no reason to reconsider them, and intentions put pressure on us to form further intentions in order to more efficiently coordinate our actions.
     From: report of Michael Bratman (Intention, Plans, and Practical Reason [1987]) by Wilson,G/Schpall,S - Action 4
     A reaction: [a compression of their summary] This distinguishes them from beliefs and desires, which contain no such normative requirements, even though they may point that way.
20. Action / B. Preliminaries of Action / 1. Intention to Act / b. Types of intention
Intention is either the aim of an action, or a long-term constraint on what we can do [Bratman, by Wilson/Schpall]
     Full Idea: We need to distinguish intention as an aim or goal of actions, and intentions as a distinctive state of commitment to future action, a state that results from and subsequently constrains our practical endeavours as planning agents.
     From: report of Michael Bratman (Intention, Plans, and Practical Reason [1987]) by Wilson,G/Schpall,S - Action 2
     A reaction: I'm not sure how distinct these are, given the obvious possibility of intermediate stages, and the embracing of any available short-cut. If I could mow my lawn with one blink, I'd do it.
20. Action / B. Preliminaries of Action / 1. Intention to Act / c. Reducing intentions
Bratman rejected reducing intentions to belief-desire, because they motivate, and have their own standards [Bratman, by Wilson/Schpall]
     Full Idea: Bratman motivated the idea that intentions are psychologically real and not reducible to desire-belief complexes by observing that they are motivationally distinctive, and subject to their own unique standards of rational appraisal.
     From: report of Michael Bratman (Intention, Plans, and Practical Reason [1987]) by Wilson,G/Schpall,S - Action 4
     A reaction: If I thought my belief was a bit warped, and my desire morally corrupt, my higher self might refuse to form an intention. If so, then Bratman is onto something. But maybe my higher self has its own beliefs and desires.