Combining Philosophers

All the ideas for J Fodor / E Lepore, Michal Walicki and W.H. Newton-Smith

unexpand these ideas     |    start again     |     specify just one area for these philosophers


37 ideas

1. Philosophy / G. Scientific Philosophy / 1. Aims of Science
For science to be rational, we must explain scientific change rationally [Newton-Smith]
     Full Idea: We are only justified in regarding scientific practice as the very paradigm of rationality if we can justify the claim that scientific change is rationally explicable.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.2)
We do not wish merely to predict, we also want to explain [Newton-Smith]
     Full Idea: We do not wish merely to predict, we also want to explain.
     From: W.H. Newton-Smith (The Rationality of Science [1981], II.3)
The real problem of science is how to choose between possible explanations [Newton-Smith]
     Full Idea: Once we move beyond investigating correlations between observables the question of what does or should guide our choice between alternative explanatory accounts becomes problematic.
     From: W.H. Newton-Smith (The Rationality of Science [1981], IX.2)
1. Philosophy / G. Scientific Philosophy / 2. Positivism
Critics attack positivist division between theory and observation [Newton-Smith]
     Full Idea: The critics of positivism attacked the conception of a dichotomy between theory and observation.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.4)
Positivists hold that theoretical terms change, but observation terms don't [Newton-Smith]
     Full Idea: For positivists it was taken that while theory change meant change in the meaning of theoretical terms, the meaning of observational terms was invariant under theory change.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.4)
3. Truth / A. Truth Problems / 6. Verisimilitude
More truthful theories have greater predictive power [Newton-Smith]
     Full Idea: If a theory is a better approximation to the truth, then it is likely that it will have greater predictive power.
     From: W.H. Newton-Smith (The Rationality of Science [1981], VIII.8)
Theories generate infinite truths and falsehoods, so they cannot be used to assess probability [Newton-Smith]
     Full Idea: We cannot explicate a useful notion of verisimilitude in terms of the number of truths and the number of falsehoods generated by a theory, because they are infinite.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.4)
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Post proved the consistency of propositional logic in 1921 [Walicki]
     Full Idea: A proof of the consistency of propositional logic was given by Emil Post in 1921.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2.1)
Propositional language can only relate statements as the same or as different [Walicki]
     Full Idea: Propositional language is very rudimentary and has limited powers of expression. The only relation between various statements it can handle is that of identity and difference. As are all the same, but Bs can be different from As.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 7 Intro)
     A reaction: [second sentence a paraphrase] In predicate logic you could represent two statements as being the same except for one element (an object or predicate or relation or quantifier).
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Boolean connectives are interpreted as functions on the set {1,0} [Walicki]
     Full Idea: Boolean connectives are interpreted as functions on the set {1,0}.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 5.1)
     A reaction: 1 and 0 are normally taken to be true (T) and false (F). Thus the functions output various combinations of true and false, which are truth tables.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The empty set is useful for defining sets by properties, when the members are not yet known [Walicki]
     Full Idea: The empty set is mainly a mathematical convenience - defining a set by describing the properties of its members in an involved way, we may not know from the very beginning what its members are.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
The empty set avoids having to take special precautions in case members vanish [Walicki]
     Full Idea: Without the assumption of the empty set, one would often have to take special precautions for the case where a set happened to contain no elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 1.1)
     A reaction: Compare the introduction of the concept 'zero', where special precautions are therefore required. ...But other special precautions are needed without zero. Either he pays us, or we pay him, or ...er. Intersecting sets need the empty set.
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Ordinals play the central role in set theory, providing the model of well-ordering [Walicki]
     Full Idea: Ordinals play the central role in set theory, providing the paradigmatic well-orderings.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: When you draw the big V of the iterative hierarchy of sets (built from successive power sets), the ordinals are marked as a single line up the middle, one ordinal for each level.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
To determine the patterns in logic, one must identify its 'building blocks' [Walicki]
     Full Idea: In order to construct precise and valid patterns of arguments one has to determine their 'building blocks'. One has to identify the basic terms, their kinds and means of combination.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History Intro)
     A reaction: A deceptively simple and important idea. All explanation requires patterns and levels, and it is the idea of building blocks which makes such things possible. It is right at the centre of our grasp of everything.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' of a theory specifies interpreting a language in a domain to make all theorems true [Walicki]
     Full Idea: A specification of a domain of objects, and of the rules for interpreting the symbols of a logical language in this domain such that all the theorems of the logical theory are true is said to be a 'model' of the theory.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.1.3)
     A reaction: The basic ideas of this emerged 1915-30, but it needed Tarski's account of truth to really get it going.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The L-S Theorem says no theory (even of reals) says more than a natural number theory [Walicki]
     Full Idea: The L-S Theorem is ...a shocking result, since it implies that any consistent formal theory of everything - even about biology, physics, sets or the real numbers - can just as well be understood as being about natural numbers. It says nothing more.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History E.2)
     A reaction: Illuminating. Particularly the point that no theory about the real numbers can say anything more than a theory about the natural numbers. So the natural numbers contain all the truths we can ever express? Eh?????
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
A compact axiomatisation makes it possible to understand a field as a whole [Walicki]
     Full Idea: Having such a compact [axiomatic] presentation of a complicated field [such as Euclid's], makes it possible to relate not only to particular theorems but also to the whole field as such.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
Axiomatic systems are purely syntactic, and do not presuppose any interpretation [Walicki]
     Full Idea: Axiomatic systems, their primitive terms and proofs, are purely syntactic, that is, do not presuppose any interpretation. ...[142] They never address the world directly, but address a possible semantic model which formally represents the world.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinals are transitive sets of transitive sets; or transitive sets totally ordered by inclusion [Walicki]
     Full Idea: An ordinal can be defined as a transitive set of transitive sets, or else, as a transitive set totally ordered by set inclusion.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Ordinals are the empty set, union with the singleton, and any arbitrary union of ordinals [Walicki]
     Full Idea: The collection of ordinals is defined inductively: Basis: the empty set is an ordinal; Ind: for an ordinal x, the union with its singleton is also an ordinal; and any arbitrary (possibly infinite) union of ordinals is an ordinal.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: [symbolism translated into English] Walicki says they are called 'ordinal numbers', but are in fact a set.
The union of finite ordinals is the first 'limit ordinal'; 2ω is the second... [Walicki]
     Full Idea: We can form infinite ordinals by taking unions of ordinals. We can thus form 'limit ordinals', which have no immediate predecessor. ω is the first (the union of all finite ordinals), ω + ω = sω is second, 3ω the third....
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
Two infinite ordinals can represent a single infinite cardinal [Walicki]
     Full Idea: There may be several ordinals for the same cardinality. ...Two ordinals can represent different ways of well-ordering the same number (aleph-0) of elements.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
     A reaction: This only applies to infinite ordinals and cardinals. For the finite, the two coincide. In infinite arithmetic the rules are different.
Members of ordinals are ordinals, and also subsets of ordinals [Walicki]
     Full Idea: Every member of an ordinal is itself an ordinal, and every ordinal is a transitive set (its members are also its subsets; a member of a member of an ordinal is also a member of the ordinal).
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.3)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
In non-Euclidean geometry, all Euclidean theorems are valid that avoid the fifth postulate [Walicki]
     Full Idea: Since non-Euclidean geometry preserves all Euclid's postulates except the fifth one, all the theorems derived without the use of the fifth postulate remain valid.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 4.1)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Inductive proof depends on the choice of the ordering [Walicki]
     Full Idea: Inductive proof is not guaranteed to work in all cases and, particularly, it depends heavily on the choice of the ordering.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], 2.1.1)
     A reaction: There has to be an well-founded ordering for inductive proofs to be possible.
10. Modality / A. Necessity / 2. Nature of Necessity
Scotus based modality on semantic consistency, instead of on what the future could allow [Walicki]
     Full Idea: The link between time and modality was severed by Duns Scotus, who proposed a notion of possibility based purely on the notion of semantic consistency. 'Possible' means for him logically possible, that is, not involving contradiction.
     From: Michal Walicki (Introduction to Mathematical Logic [2012], History B.4)
10. Modality / C. Sources of Modality / 1. Sources of Necessity
De re necessity arises from the way the world is [Newton-Smith]
     Full Idea: A necessary truth is 'de re' if its necessity arises from the way the world is.
     From: W.H. Newton-Smith (The Rationality of Science [1981], VII.6)
11. Knowledge Aims / A. Knowledge / 4. Belief / a. Beliefs
We must assess the truth of beliefs in identifying them [Newton-Smith]
     Full Idea: We cannot determine what someone's beliefs are independently of assessing to some extent the truth or falsity of the beliefs.
     From: W.H. Newton-Smith (The Rationality of Science [1981], X.4)
13. Knowledge Criteria / E. Relativism / 6. Relativism Critique
Defeat relativism by emphasising truth and reference, not meaning [Newton-Smith]
     Full Idea: The challenge of incommensurability can be met once it is realised that in comparing theories the notions of truth and reference are more important than that of meaning.
     From: W.H. Newton-Smith (The Rationality of Science [1981], I.6)
14. Science / A. Basis of Science / 1. Observation
A full understanding of 'yellow' involves some theory [Newton-Smith]
     Full Idea: A full grasp of the concept '…is yellow' involves coming to accept as true bits of theory; that is, generalisations involving the term 'yellow'.
     From: W.H. Newton-Smith (The Rationality of Science [1981], II.2)
14. Science / A. Basis of Science / 5. Anomalies
All theories contain anomalies, and so are falsified! [Newton-Smith]
     Full Idea: According to Feyerabend all theories are born falsified, because no theory has ever been totally free of anomalies.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
The anomaly of Uranus didn't destroy Newton's mechanics - it led to Neptune's discovery [Newton-Smith]
     Full Idea: When scientists observed the motion of Uranus, they did not give up on Newtonian mechanics. Instead they posited the existence of Neptune.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
Anomalies are judged against rival theories, and support for the current theory [Newton-Smith]
     Full Idea: Whether to reject an anomaly has to be decided on the basis of the availability of a rival theory, and on the basis of the positive evidence for the theory in question.
     From: W.H. Newton-Smith (The Rationality of Science [1981], III.9)
14. Science / B. Scientific Theories / 1. Scientific Theory
Why should it matter whether or not a theory is scientific? [Newton-Smith]
     Full Idea: Why should it be so important to distinguish between theories that are scientific and those that are not?
     From: W.H. Newton-Smith (The Rationality of Science [1981], IV.3)
14. Science / B. Scientific Theories / 5. Commensurability
If theories are really incommensurable, we could believe them all [Newton-Smith]
     Full Idea: If theories are genuinely incommensurable why should I be faced with the problem of choosing between them? Why not believe them all?
     From: W.H. Newton-Smith (The Rationality of Science [1981], VII.1)
19. Language / A. Nature of Meaning / 7. Meaning Holism / b. Language holism
If some inferences are needed to fix meaning, but we don't know which, they are all relevant [Fodor/Lepore, by Boghossian]
     Full Idea: The Master Argument for linguistic holism is: Some of an expression's inferences are relevant to fixing its meaning; there is no way to distinguish the inferences that are constitutive (from Quine); so all inferences are relevant to fixing meaning.
     From: report of J Fodor / E Lepore (Holism: a Shopper's Guide [1993], §III) by Paul Boghossian - Analyticity Reconsidered
     A reaction: This would only be if you thought that the pattern of inferences is what fixes the meanings, but how can you derive inferences before you have meanings? The underlying language of thought generates the inferences? Meanings are involved!
20. Action / C. Motives for Action / 3. Acting on Reason / c. Reasons as causes
Explaining an action is showing that it is rational [Newton-Smith]
     Full Idea: To explain an action as an action is to show that it is rational.
     From: W.H. Newton-Smith (The Rationality of Science [1981], X.2)