Combining Philosophers

All the ideas for Jeremiah, Machamer,P/Darden,L/Craver,C and Robin F. Hendry

unexpand these ideas     |    start again     |     specify just one area for these philosophers


27 ideas

7. Existence / B. Change in Existence / 2. Processes
Activities have place, rate, duration, entities, properties, modes, direction, polarity, energy and range [Machamer/Darden/Craver]
     Full Idea: Activities can be identified spatiotemporally, and individuated by rate, duration, and types of entity and property that engage in them. They also have modes of operation, directionality, polarity, energy requirements and a range.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3)
     A reaction: This is their attempt at making 'activity' one of the two central concepts of ontology, along with 'entity'. A helpful analysis. It just seems to be one way of slicing the cake.
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
Supervenience is simply modally robust property co-variance [Hendry]
     Full Idea: Supervenience is not an ontological relationship, being just modally robust property co-variance.
     From: Robin F. Hendry (Chemistry [2008], 'Ontol')
     A reaction: I take supervenience to be nothing more than an interesting phenomenon that requires explanation. I suppose Humean Supervenience is a priori metaphysics, since you could hardly explain it.
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
Penicillin causes nothing; the cause is what penicillin does [Machamer/Darden/Craver]
     Full Idea: It is not the penicillin that causes the pneumonia to disappear, but what the penicillin does.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3.1)
     A reaction: This is a very neat example for illustrating how we slip into 'entity' talk, when the reality we are addressing actually concerns processes. Without the 'what it does', penicillin can't participate in causation at all.
11. Knowledge Aims / A. Knowledge / 2. Understanding
We understand something by presenting its low-level entities and activities [Machamer/Darden/Craver]
     Full Idea: The intelligibility of a phenomenon consists in the mechanisms being portrayed in terms of a field's bottom out entities and activities.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 7)
     A reaction: In other words, we understand complex things by reducing them to things we do understand. It would, though, be illuminating to see a nest of interconnected activities, even if we understood none of them.
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
The explanation is not the regularity, but the activity sustaining it [Machamer/Darden/Craver]
     Full Idea: It is not regularities that explain but the activities that sustain the regularities.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 7)
     A reaction: Good, but we had better not characterise the 'activities' in terms of regularities.
14. Science / D. Explanation / 2. Types of Explanation / h. Explanations by function
Functions are not properties of objects, they are activities contributing to mechanisms [Machamer/Darden/Craver]
     Full Idea: It is common to speak of functions as properties 'had by' entities, …but they should rather be understood in terms of the activities by virtue of which entities contribute to the workings of a mechanism.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3)
     A reaction: I'm certainly quite passionately in favour of cutting down on describing the world almost entirely in terms of entities which have properties. An 'activity', though, is a bit of an elusive concept.
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
A mechanism explains a phenomenon by showing how it was produced [Machamer/Darden/Craver]
     Full Idea: To give a description of a mechanism for a phenomenon is to explain that phenomenon, i.e. to explain how it was produced.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 1)
     A reaction: To 'show how' something happens needs a bit of precisification. It is probably analytic that 'showing how' means 'revealing the mechanism', though 'mechanism' then becomes the tricky concept.
Mechanisms are systems organised to produce regular change [Machamer/Darden/Craver]
     Full Idea: Mechanisms are entities and activities organized such that they are productive of regular change from start or set-up to finish or termination conditions.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 1)
     A reaction: This is their initial formal definition of a mechanism. Note that a mere 'activity' can be included. Presumably the mechanism might have an outcome that was not the intended outcome. Does a random element disqualify it? Are hands mechanisms?
Our account of mechanism combines both entities and activities [Machamer/Darden/Craver]
     Full Idea: We emphasise the activities in mechanisms. This is explicitly dualist. Substantivalists speak of entities with dispositions to act. Process ontologists reify activities and try to reduce entities to processes. We try to capture both intuitions.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3)
     A reaction: [A quotation of selected fragments] The problem here seems to be the raising of an 'activity' to a central role in ontology, when it doesn't seem to be primitive, and will typically be analysed in a variety of ways.
Descriptions of explanatory mechanisms have a bottom level, where going further is irrelevant [Machamer/Darden/Craver]
     Full Idea: Nested hierachical descriptions of mechanisms typically bottom out in lowest level mechanisms. …Bottoming out is relative …the explanation comes to an end, and description of lower-level mechanisms would be irrelevant.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 5.1)
     A reaction: This seems to me exactly the right story about mechanism, and it is a story I am associating with essentialism. The relevance is ties to understanding. The lower level is either fully understood, or totally baffling.
Mechanisms are not just push-pull systems [Machamer/Darden/Craver]
     Full Idea: One should not think of mechanisms as exclusively mechanical (push-pull) systems.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 1)
     A reaction: The difficulty seems to be that you could broaden the concept of 'mechanism' indefinitely, so that it covered history, mathematics, populations, cultural change, and even mathematics. Where to stop?
14. Science / D. Explanation / 2. Types of Explanation / k. Explanations by essence
Nuclear charge (plus laws) explains electron structure and spectrum, but not vice versa [Hendry]
     Full Idea: Given relevant laws of nature (quantum mechanics, the exclusion principle) nuclear charge determines and explains electronic structure and spectroscopic behaviour, but not vice versa.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: I argue that the first necessary condition for essentialism is a direction of explanation, and here we seem to have one.
14. Science / D. Explanation / 3. Best Explanation / b. Ultimate explanation
There are four types of bottom-level activities which will explain phenomena [Machamer/Darden/Craver]
     Full Idea: There are four bottom-out kinds of activities: geometrico-mechanical, electro-chemical, electro-magnetic and energetic. These are abstract means of production that can be fruitfully applied in particular cases to explain phenomena.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 7)
     A reaction: I like that. It gives a nice core for a metaphysics for physicalists. I suspect that 'mechanical' can be reduced to something else, and that 'energetic' will disappear in the final story.
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
We can abstract by taking an exemplary case and ignoring the detail [Machamer/Darden/Craver]
     Full Idea: Abstractions may be constructed by taking an exemplary case or instance and removing detail.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 5.3)
     A reaction: I love 'removing detail'. That's it. Simple. I think this process is the basis of our whole capacity to formulate abstract concepts. Forget Frege - he's just describing the results of the process. How do we decide what is 'detail'? Essentialism!
24. Political Theory / B. Nature of a State / 1. Purpose of a State
Jeremiah implied a link between weakness and goodness, and the evil of the state [Jeremiah, by Johnson,P]
     Full Idea: Jeremiah was the first to perceive the possibility that powerlessness and goodness were somehow linked; ...he comes close to the notion that the state itself was inherently evil.
     From: report of Jeremiah (24: Book of Jeremiah [c.570 BCE]) by Paul Johnson - The History of the Jews Pt II
     A reaction: This looks like the first seeds of the anarchist idea. You abandon the state for something 'higher'. 'Perceive' rather begs the question of whether he is right. This is the full 'inversion of values' of Nietzsche.
26. Natural Theory / B. Natural Kinds / 2. Defining Kinds
Maybe two kinds are the same if there is no change of entropy on isothermal mixing [Hendry]
     Full Idea: One suggestion is that any two different substance, however alike, exhibit a positive entropy change on mixing. So absence of entropy change on isothermal mixing provides a criterion of sameness of kind.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: [He cites Paul Needham 2000] This sounds nice, because at a more amateur level we can say that stuff is the same if mixing two samples of it produces no difference. I call it the Upanishads Test.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / a. Scientific essentialism
The nature of an element must survive chemical change, so it is the nucleus, not the electrons [Hendry]
     Full Idea: Whatever earns something membership of the extension of 'krypton' must be a property that can survive chemical change and, therefore, the gain and loss of electrons. Hence what makes it krypton must be a nuclear property.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: A very nice illuminating example of essentialism in chemistry. The 'nature' is what survives through change, just like what Aristotle said, innit?
Maybe the nature of water is macroscopic, and not in the microstructure [Hendry]
     Full Idea: Some deny that that microstructure is what makes it water; substance identity and difference should be determined instead by macroscopic similarities and differences.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: Very plausible. Is the essential nature of human beings to be found in the structure of our cells?
Maybe water is the smallest part of it that still counts as water (which is H2O molecules) [Hendry]
     Full Idea: If they do count as water, individual H2O molecules are the smallest items that can qualify as water on their own account. Hydroxyl ions and protons, in contrast, qualify as water only as part of a larger body.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: As Aristotle might say, this is the homoeomerous aspect of water. This is Hendry's own proposal, and seems rather good.
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
Laws of nature have very little application in biology [Machamer/Darden/Craver]
     Full Idea: The traditional notion of a law of nature has few, if any, applications in neurobiology or molecular biology.
     From: Machamer,P/Darden,L/Craver,C (Thinking About Mechanisms [2000], 3.2)
     A reaction: This is a simple and self-evident fact, and bad news for anyone who want to build their entire ontology around laws of nature. I take such a notion to be fairly empty, except as a convenient heuristic device.
27. Natural Reality / F. Chemistry / 1. Chemistry
Water continuously changes, with new groupings of molecules [Hendry]
     Full Idea: Macroscopic bodies of water are complex and dynamic congeries of different molecular species, in which there is a constant dissociation of individual molecules, re-association of ions, and formation, growth and disassociation of oligomers.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: The point is that these activities are needed to explain the behaviour of water (such as its conductivity).
Compounds can differ with the same collection of atoms, so structure matters too [Hendry]
     Full Idea: The distinctness of the isomers ethanol (CH3CH2OH, boiling at 78.4°) and dimethyl ether (CH3OCH3, boiling at -24.9°) must lie in their different molecular structures. ...But structure has continuously varying quantities, like bond length and angle.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: [compressed] This seems to imply that what matters is an idealised abstraction of the structure (i.e. its topology), which is a reason for denying that chemistry is reducible to mere physics.
27. Natural Reality / F. Chemistry / 2. Modern Elements
Defining elements by atomic number allowed atoms of an element to have different masses [Hendry]
     Full Idea: In 1923 elements were defined as populations of atoms with the same nuclear charge (i.e. atomic number), allowing that atoms of the same element may have different masses.
     From: Robin F. Hendry (Chemistry [2008], 'Chem')
     A reaction: The point is that it allowed isotopes of the same element to come under one heading. This is fine for the heavier elements, but a bit dubious for the very light ones (where an isotope makes a bigger difference).
Elements survive chemical change, and are tracked to explain direction and properties [Hendry]
     Full Idea: Elements survive chemical change, and chemical explanations track them from one composite substance to another, thereby explaining both the direction of the chemical change, and the properties of the substances they compose.
     From: Robin F. Hendry (Chemistry [2008], Intro)
     A reaction: [The 16,000th idea of this database, entered on Guy Fawkes' Day 2013]
27. Natural Reality / F. Chemistry / 3. Periodic Table
Generally it is nuclear charge (not nuclear mass) which determines behaviour [Hendry]
     Full Idea: In general, nuclear charge is the overwhelming determinant of an element's chemical behaviour, while nuclear mass is a negligible factor.
     From: Robin F. Hendry (Chemistry [2008], 'Micro')
     A reaction: The exception is the isotopes of very light elements light hydrogen.
28. God / A. Divine Nature / 3. Divine Perfections
Do I not fill heaven and earth? saith the Lord [Jeremiah]
     Full Idea: Can any hide himself in secret places that I shall not see him? saith the Lord. Do I not fill heaven and earth?
     From: Jeremiah (24: Book of Jeremiah [c.570 BCE], 23:24), quoted by Robin Le Poidevin - Travels in Four Dimensions 03 'Where'
     A reaction: If the Lord is omnipresent, then He must be present in each one of us. But does the Lord interact with each of us?
28. God / C. Attitudes to God / 3. Deism
Am I a God afar off, and not a God close at hand? [Jeremiah]
     Full Idea: Am I a God afar off, and not a God close at hand? Do I not fill heaven and earth?
     From: Jeremiah (24: Book of Jeremiah [c.570 BCE], 23:23), quoted by Clare Carlisle - Kierkegaard: a guide for the perplexed 3
     A reaction: I assume this was often quoted by eighteenth century divines, against the rise of deism.