Combining Philosophers

All the ideas for John Austin, Robert S. Wolf and Mark Sainsbury

unexpand these ideas     |    start again     |     specify just one area for these philosophers


31 ideas

4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
A 'tautology' must include connectives [Wolf,RS]
     Full Idea: 'For every number x, x = x' is not a tautology, because it includes no connectives.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.2)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Deduction Theorem: T∪{P}|-Q, then T|-(P→Q), which justifies Conditional Proof [Wolf,RS]
     Full Idea: Deduction Theorem: If T ∪ {P} |- Q, then T |- (P → Q). This is the formal justification of the method of conditional proof (CPP). Its converse holds, and is essentially modus ponens.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / d. Universal quantifier ∀
Universal Generalization: If we prove P(x) with no special assumptions, we can conclude ∀xP(x) [Wolf,RS]
     Full Idea: Universal Generalization: If we can prove P(x), only assuming what sort of object x is, we may conclude ∀xP(x) for the same x.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
     A reaction: This principle needs watching closely. If you pick one person in London, with no presuppositions, and it happens to be a woman, can you conclude that all the people in London are women? Fine in logic and mathematics, suspect in life.
Universal Specification: ∀xP(x) implies P(t). True for all? Then true for an instance [Wolf,RS]
     Full Idea: Universal Specification: from ∀xP(x) we may conclude P(t), where t is an appropriate term. If something is true for all members of a domain, then it is true for some particular one that we specify.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
Existential Generalization (or 'proof by example'): if we can say P(t), then we can say something is P [Wolf,RS]
     Full Idea: Existential Generalization (or 'proof by example'): From P(t), where t is an appropriate term, we may conclude ∃xP(x).
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.3)
     A reaction: It is amazing how often this vacuous-sounding principles finds itself being employed in discussions of ontology, but I don't quite understand why.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / e. Axiom of the Empty Set IV
Empty Set: ∃x∀y ¬(y∈x). The unique empty set exists [Wolf,RS]
     Full Idea: Empty Set Axiom: ∃x ∀y ¬ (y ∈ x). There is a set x which has no members (no y's). The empty set exists. There is a set with no members, and by extensionality this set is unique.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.3)
     A reaction: A bit bewildering for novices. It says there is a box with nothing in it, or a pair of curly brackets with nothing between them. It seems to be the key idea in set theory, because it asserts the idea of a set over and above any possible members.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
Comprehension Axiom: if a collection is clearly specified, it is a set [Wolf,RS]
     Full Idea: The comprehension axiom says that any collection of objects that can be clearly specified can be considered to be a set.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.2)
     A reaction: This is virtually tautological, since I presume that 'clearly specified' means pinning down exact which items are the members, which is what a set is (by extensionality). The naïve version is, of course, not so hot.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
In first-order logic syntactic and semantic consequence (|- and |=) nicely coincide [Wolf,RS]
     Full Idea: One of the most appealing features of first-order logic is that the two 'turnstiles' (the syntactic single |-, and the semantic double |=), which are the two reasonable notions of logical consequence, actually coincide.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: In the excitement about the possibility of second-order logic, plural quantification etc., it seems easy to forget the virtues of the basic system that is the target of the rebellion. The issue is how much can be 'expressed' in first-order logic.
First-order logic is weakly complete (valid sentences are provable); we can't prove every sentence or its negation [Wolf,RS]
     Full Idea: The 'completeness' of first order-logic does not mean that every sentence or its negation is provable in first-order logic. We have instead the weaker result that every valid sentence is provable.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: Peter Smith calls the stronger version 'negation completeness'.
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
It is best to say that a name designates iff there is something for it to designate [Sainsbury]
     Full Idea: It is better to say that 'For all x ("Hesperus" stands for x iff x = Hesperus)', than to say '"Hesperus" stands for Hesperus', since then the expression can be a name with no bearer (e.g. "Vulcan").
     From: Mark Sainsbury (The Essence of Reference [2006], 18.2)
     A reaction: In cases where it is unclear whether the name actually designates something, it seems desirable that the name is at least allowed to function semantically.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions may not be referring expressions, since they can fail to refer [Sainsbury]
     Full Idea: Almost everyone agrees that intelligible definite descriptions may lack a referent; this has historically been a reason for not counting them among referring expressions.
     From: Mark Sainsbury (The Essence of Reference [2006], 18.2)
     A reaction: One might compare indexicals such as 'I', which may be incapable of failing to refer when spoken. However 'look at that!' frequently fails to communicate reference.
Definite descriptions are usually rigid in subject, but not in predicate, position [Sainsbury]
     Full Idea: Definite descriptions used with referential intentions (usually in subject position) are normally rigid, ..but in predicate position they are normally not rigid, because there is no referential intention.
     From: Mark Sainsbury (The Essence of Reference [2006], 18.5)
     A reaction: 'The man in the blue suit is the President' seems to fit, but 'The President is the head of state' doesn't. Seems roughly right, but language is always too complex for philosophers.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory uses sets to show that mathematical deduction fits mathematical truth [Wolf,RS]
     Full Idea: Model theory uses set theory to show that the theorem-proving power of the usual methods of deduction in mathematics corresponds perfectly to what must be true in actual mathematical structures.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: That more or less says that model theory demonstrates the 'soundness' of mathematics (though normal arithmetic is famously not 'complete'). Of course, he says they 'correspond' to the truths, rather than entailing them.
First-order model theory rests on completeness, compactness, and the Löwenheim-Skolem-Tarski theorem [Wolf,RS]
     Full Idea: The three foundations of first-order model theory are the Completeness theorem, the Compactness theorem, and the Löwenheim-Skolem-Tarski theorem.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.3)
     A reaction: On p.180 he notes that Compactness and LST make no mention of |- and are purely semantic, where Completeness shows the equivalence of |- and |=. All three fail for second-order logic (p.223).
Model theory 'structures' have a 'universe', some 'relations', some 'functions', and some 'constants' [Wolf,RS]
     Full Idea: A 'structure' in model theory has a non-empty set, the 'universe', as domain of variables, a subset for each 'relation', some 'functions', and 'constants'.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.2)
Model theory reveals the structures of mathematics [Wolf,RS]
     Full Idea: Model theory helps one to understand what it takes to specify a mathematical structure uniquely.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.1)
     A reaction: Thus it is the development of model theory which has led to the 'structuralist' view of mathematics.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'isomorphism' is a bijection that preserves all structural components [Wolf,RS]
     Full Idea: An 'isomorphism' is a bijection between two sets that preserves all structural components. The interpretations of each constant symbol are mapped across, and functions map the relation and function symbols.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.4)
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The LST Theorem is a serious limitation of first-order logic [Wolf,RS]
     Full Idea: The Löwenheim-Skolem-Tarski theorem demonstrates a serious limitation of first-order logic, and is one of primary reasons for considering stronger logics.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.7)
5. Theory of Logic / K. Features of Logics / 4. Completeness
If a theory is complete, only a more powerful language can strengthen it [Wolf,RS]
     Full Idea: It is valuable to know that a theory is complete, because then we know it cannot be strengthened without passing to a more powerful language.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 5.5)
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Most deductive logic (unlike ordinary reasoning) is 'monotonic' - we don't retract after new givens [Wolf,RS]
     Full Idea: Deductive logic, including first-order logic and other types of logic used in mathematics, is 'monotonic'. This means that we never retract a theorem on the basis of new givens. If T|-φ and T⊆SW, then S|-φ. Ordinary reasoning is nonmonotonic.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 1.7)
     A reaction: The classic example of nonmonotonic reasoning is the induction that 'all birds can fly', which is retracted when the bird turns out to be a penguin. He says nonmonotonic logic is a rich field in computer science.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
An ordinal is an equivalence class of well-orderings, or a transitive set whose members are transitive [Wolf,RS]
     Full Idea: Less theoretically, an ordinal is an equivalence class of well-orderings. Formally, we say a set is 'transitive' if every member of it is a subset of it, and an ordinal is a transitive set, all of whose members are transitive.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], 2.4)
     A reaction: He glosses 'transitive' as 'every member of a member of it is a member of it'. So it's membership all the way down. This is the von Neumann rather than the Zermelo approach (which is based on singletons).
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Modern mathematics has unified all of its objects within set theory [Wolf,RS]
     Full Idea: One of the great achievements of modern mathematics has been the unification of its many types of objects. It began with showing geometric objects numerically or algebraically, and culminated with set theory representing all the normal objects.
     From: Robert S. Wolf (A Tour through Mathematical Logic [2005], Pref)
     A reaction: His use of the word 'object' begs all sorts of questions, if you are arriving from the street, where an object is something which can cause a bruise - but get used to it, because the word 'object' has been borrowed for new uses.
7. Existence / D. Theories of Reality / 10. Vagueness / b. Vagueness of reality
If 'red' is vague, then membership of the set of red things is vague, so there is no set of red things [Sainsbury]
     Full Idea: Sets have sharp boundaries, or are sharp objects; an object either definitely belongs to a set, or it does not. But 'red' is vague; there objects which are neither definitely red nor definitely not red. Hence there is no set of red things.
     From: Mark Sainsbury (Concepts without Boundaries [1990], §2)
     A reaction: Presumably that will entail that there IS a set of things which can be described as 'definitely red'. If we describe something as 'definitely having a hint of red about it', will that put it in a set? In fact will the applicability of 'definitely' do?
7. Existence / E. Categories / 2. Categorisation
We should abandon classifying by pigeon-holes, and classify around paradigms [Sainsbury]
     Full Idea: We must reject the classical picture of classification by pigeon-holes, and think in other terms: classifying can be, and often is, clustering round paradigms.
     From: Mark Sainsbury (Concepts without Boundaries [1990], §8)
     A reaction: His conclusion to a discussion of the problem of vagueness, where it is identified with concepts which have no boundaries. Pigeon-holes are a nice exemplar of the Enlightenment desire to get everything right. I prefer Aristotle's categories, Idea 3311.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vague concepts are concepts without boundaries [Sainsbury]
     Full Idea: If a word is vague, there are or could be borderline cases, but non-vague expressions can also have borderline cases. The essence of vagueness is to be found in the idea vague concepts are concepts without boundaries.
     From: Mark Sainsbury (Concepts without Boundaries [1990], Intro)
     A reaction: He goes on to say that vague concepts are not embodied in clear cut sets, which is what gives us our notion of a boundary. So what is vague is 'membership'. You are either a member of a club or not, but when do you join the 'middle-aged'?
If concepts are vague, people avoid boundaries, can't spot them, and don't want them [Sainsbury]
     Full Idea: Vague concepts are boundaryless, ...and the manifestations are an unwillingness to draw any such boundaries, the impossibility of identifying such boundaries, and needlessness and even disutility of such boundaries.
     From: Mark Sainsbury (Concepts without Boundaries [1990], §5)
     A reaction: People have a very fine-tuned notion of whether the sharp boundary of a concept is worth discussing. The interesting exception are legal people, who are often forced to find precision where everyone else hates it. Who deserves to inherit the big house?
Boundaryless concepts tend to come in pairs, such as child/adult, hot/cold [Sainsbury]
     Full Idea: Boundaryless concepts tend to come in systems of contraries: opposed pairs like child/adult, hot/cold, weak/strong, true/false, and complex systems of colour terms. ..Only a contrast with 'adult' will show what 'child' excludes.
     From: Mark Sainsbury (Concepts without Boundaries [1990], §5)
     A reaction: This might be expected. It all comes down to the sorites problem, of when one thing turns into something else. If it won't merge into another category, then presumably the isolated concept stays applicable (until reality terminates it? End of sheep..).
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
A new usage of a name could arise from a mistaken baptism of nothing [Sainsbury]
     Full Idea: A baptism which, perhaps through some radical mistake, is the baptism of nothing, is as good a propagator of a new use as a baptism of an object.
     From: Mark Sainsbury (The Essence of Reference [2006], 18.3)
     A reaction: An obvious example might be the Loch Ness Monster. There is something intuitively wrong about saying that physical objects are actually part of linguistic meaning or reference. I am not a meaning!
19. Language / B. Reference / 5. Speaker's Reference
Even a quantifier like 'someone' can be used referentially [Sainsbury]
     Full Idea: A large range of expressions can be used with referential intentions, including quantifier phrases (as in 'someone has once again failed to close the door properly').
     From: Mark Sainsbury (The Essence of Reference [2006], 18.5)
     A reaction: This is the pragmatic aspect of reference, where it can be achieved by all sorts of means. But are quantifiers inherently referential in their semantic function? Some of each, it seems.
25. Social Practice / D. Justice / 2. The Law / d. Legal positivism
The existence of law is one thing, its merits and demerits another [Austin,J]
     Full Idea: The existence of law is one thing; its merit and demerit another. Whether it be or be not is one enquiry; whether it be or be not conformable to an assumed standard is a different enquiry.
     From: John Austin (Lectures on Jurisprudence [1858], p.214), quoted by Jens Zimmermann - Hermeneutics: a very short introduction 6 'Positivism'
     A reaction: It is impossible to contest this point, but the issue is whether there is nothing more to law than its written existence.
26. Natural Theory / A. Speculations on Nature / 3. Natural Function
Things are thought to have a function, even when they can't perform them [Sainsbury]
     Full Idea: On one common use of the notion of a function, something can possess a function which it does not, or even cannot, perform. A malformed heart is to pump blood, even if such a heart cannot in fact pump blood.
     From: Mark Sainsbury (The Essence of Reference [2006], 18.2)
     A reaction: One might say that the heart in a dead body had the function of pumping blood, but does it still have that function? Do I have the function of breaking the world 100 metres record, even though I can't quite manage it? Not that simple.