Combining Philosophers

All the ideas for Luitzen E.J. Brouwer, ystein Linnebo and William Shakespeare

unexpand these ideas     |    start again     |     specify just one area for these philosophers


46 ideas

1. Philosophy / D. Nature of Philosophy / 7. Despair over Philosophy
For there was never yet philosopher/ That could endure the toothache patiently [Shakespeare]
     Full Idea: For there was never yet philosopher/ That could endure the toothache patiently.
     From: William Shakespeare (Much Ado About Nothing [1600], V.i)
     A reaction: You can't argue with that. I do think that people who have studied philosophy at length are more likely to be 'philosophical' when faced with human misery, but only up to a point.
2. Reason / A. Nature of Reason / 1. On Reason
Good reasons must give way to better [Shakespeare]
     Full Idea: Good reasons must of force give way to better.
     From: William Shakespeare (Julius Caesar [1599], 4.3.205)
     A reaction: [Brutus to Cassius] This remark is an axiom of rationality. But, of course, reasons can come in groups, and three modest reasons may compete with one very good reason.
2. Reason / D. Definition / 12. Paraphrase
'Some critics admire only one another' cannot be paraphrased in singular first-order [Linnebo]
     Full Idea: The Geach-Kaplan sentence 'Some critics admire only one another' provably has no singular first-order paraphrase using only its predicates.
     From: Øystein Linnebo (Plural Quantification [2008], 1)
     A reaction: There seems to be a choice of either going second-order (picking out a property), or going plural (collectively quantifying), or maybe both.
4. Formal Logic / E. Nonclassical Logics / 7. Paraconsistency
Our dislike of contradiction in logic is a matter of psychology, not mathematics [Brouwer]
     Full Idea: Not to the mathematician, but to the psychologist, belongs the task of explaining why ...we are averse to so-called contradictory systems in which the negative as well as the positive of certain propositions are valid.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.79)
     A reaction: Was the turning point of Graham Priest's life the day he read this sentence? I don't agree. I take the principle of non-contradiction to be a highly generalised observation of how the world works (and Russell agrees with me).
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
A comprehension axiom is 'predicative' if the formula has no bound second-order variables [Linnebo]
     Full Idea: If φ contains no bound second-order variables, the corresponding comprehension axiom is said to be 'predicative'; otherwise it is 'impredicative'.
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §1)
     A reaction: ['Predicative' roughly means that a new predicate is created, and 'impredicative' means that it just uses existing predicates]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory says any formula defines a set, and coextensive sets are identical [Linnebo]
     Full Idea: Naïve set theory is based on the principles that any formula defines a set, and that coextensive sets are identical.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.2)
     A reaction: The second principle is a standard axiom of ZFC. The first principle causes the trouble.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
A 'pure logic' must be ontologically innocent, universal, and without presuppositions [Linnebo]
     Full Idea: I offer these three claims as a partial analysis of 'pure logic': ontological innocence (no new entities are introduced), universal applicability (to any realm of discourse), and cognitive primacy (no extra-logical ideas are presupposed).
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §1)
A pure logic is wholly general, purely formal, and directly known [Linnebo]
     Full Idea: The defining features of a pure logic are its absolute generality (the objects of discourse are irrelevant), and its formality (logical truths depend on form, not matter), and its cognitive primacy (no extra-logical understanding is needed to grasp it).
     From: Øystein Linnebo (Plural Quantification [2008], 3)
     A reaction: [compressed] This strikes me as very important. The above description seems to contain no ontological commitment at all, either to the existence of something, or to two things, or to numbers, or to a property. Pure logic seems to be 'if-thenism'.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
For intuitionists excluded middle is an outdated historical convention [Brouwer]
     Full Idea: From the intuitionist standpoint the dogma of the universal validity of the principle of excluded third in mathematics can only be considered as a phenomenon of history of civilization, like the rationality of pi or rotation of the sky about the earth.
     From: Luitzen E.J. Brouwer (works [1930]), quoted by Shaughan Lavine - Understanding the Infinite VI.2
     A reaction: [Brouwer 1952:510-11]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plural quantification depends too heavily on combinatorial and set-theoretic considerations [Linnebo]
     Full Idea: If my arguments are correct, the theory of plural quantification has no right to the title 'logic'. ...The impredicative plural comprehension axioms depend too heavily on combinatorial and set-theoretic considerations.
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §4)
Second-order quantification and plural quantification are different [Linnebo]
     Full Idea: Second-order quantification and plural quantification are generally regarded as different forms of quantification.
     From: Øystein Linnebo (Plural Quantification [2008], 2)
Traditionally we eliminate plurals by quantifying over sets [Linnebo]
     Full Idea: The traditional view in analytic philosophy has been that all plural locutions should be paraphrased away by quantifying over sets, though Boolos and other objected that this is unnatural and unnecessary.
     From: Øystein Linnebo (Plural Quantification [2008], 5)
Instead of complex objects like tables, plurally quantify over mereological atoms tablewise [Linnebo]
     Full Idea: Plural quantification can be used to eliminate the commitment of science and common sense to complex objects. We can use plural quantification over mereological atoms arranged tablewise or chairwise.
     From: Øystein Linnebo (Plural Quantification [2008], 4.5)
     A reaction: [He cites Hossack and van Ingwagen]
Can second-order logic be ontologically first-order, with all the benefits of second-order? [Linnebo]
     Full Idea: According to its supporters, second-order logic allow us to pay the ontological price of a mere first-order theory and get the corresponding monadic second-order theory for free.
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §0)
Plural plurals are unnatural and need a first-level ontology [Linnebo]
     Full Idea: Higher-order plural quantification (plural plurals) is often rejected because plural quantification is supposedly ontological innocent, with no plural things to be plural, and because it is not found in ordinary English.
     From: Øystein Linnebo (Plural Quantification [2008], 2.4)
     A reaction: [Summary; he cites Boolos as a notable rejector] Linnebo observes that Icelandic contains a word 'tvennir' which means 'two pairs of'.
Plural quantification may allow a monadic second-order theory with first-order ontology [Linnebo]
     Full Idea: Plural quantification seems to offer ontological economy. We can pay the price of a mere first-order theory and then use plural quantification to get for free the corresponding monadic second-order theory, which would be an ontological bargain.
     From: Øystein Linnebo (Plural Quantification [2008], 4.4)
     A reaction: [He mentions Hellman's modal structuralism in mathematics]
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
In classical semantics singular terms refer, and quantifiers range over domains [Linnebo]
     Full Idea: In classical semantics the function of singular terms is to refer, and that of quantifiers, to range over appropriate domains of entities.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 7.1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The axioms of group theory are not assertions, but a definition of a structure [Linnebo]
     Full Idea: Considered in isolation, the axioms of group theory are not assertions but comprise an implicit definition of some abstract structure,
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 3.5)
     A reaction: The traditional Euclidean approach is that axioms are plausible assertions with which to start. The present idea sums up the modern approach. In the modern version you can work backwards from a structure to a set of axioms.
To investigate axiomatic theories, mathematics needs its own foundational axioms [Linnebo]
     Full Idea: Mathematics investigates the deductive consequences of axiomatic theories, but it also needs its own foundational axioms in order to provide models for its various axiomatic theories.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.1)
     A reaction: This is a problem which faces the deductivist (if-then) approach. The deductive process needs its own grounds.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is a mental activity which does not use language [Brouwer, by Bostock]
     Full Idea: Brouwer made the rather extraordinary claim that mathematics is a mental activity which uses no language.
     From: report of Luitzen E.J. Brouwer (Mathematics, Science and Language [1928]) by David Bostock - Philosophy of Mathematics 7.1
     A reaction: Since I take language to have far less of a role in thought than is commonly believed, I don't think this idea is absurd. I would say that we don't use language much when we are talking!
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Brouwer saw reals as potential, not actual, and produced by a rule, or a choice [Brouwer, by Shapiro]
     Full Idea: In his early writing, Brouwer took a real number to be a Cauchy sequence determined by a rule. Later he augmented rule-governed sequences with free-choice sequences, but even then the attitude is that Cauchy sequences are potential, not actual infinities.
     From: report of Luitzen E.J. Brouwer (works [1930]) by Stewart Shapiro - Philosophy of Mathematics 6.6
     A reaction: This is the 'constructivist' view of numbers, as espoused by intuitionists like Brouwer.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Scientific laws largely rest on the results of counting and measuring [Brouwer]
     Full Idea: A large part of the natural laws introduced by science treat only of the mutual relations between the results of counting and measuring.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.77)
     A reaction: His point, I take it, is that the higher reaches of numbers have lost touch with the original point of the system. I now see the whole issue as just depending on conventions about the agreed extension of the word 'number'.
Brouwer regards the application of mathematics to the world as somehow 'wicked' [Brouwer, by Bostock]
     Full Idea: Brouwer regards as somehow 'wicked' the idea that mathematics can be applied to a non-mental subject matter, the physical world, and that it might develop in response to the needs which that application reveals.
     From: report of Luitzen E.J. Brouwer (Mathematics, Science and Language [1928]) by David Bostock - Philosophy of Mathematics 7.1
     A reaction: The idea is that mathematics only concerns creations of the human mind. It presumably has no more application than, say, noughts-and-crosses.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
You can't prove consistency using a weaker theory, but you can use a consistent theory [Linnebo]
     Full Idea: If the 2nd Incompleteness Theorem undermines Hilbert's attempt to use a weak theory to prove the consistency of a strong one, it is still possible to prove the consistency of one theory, assuming the consistency of another theory.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.6)
     A reaction: Note that this concerns consistency, not completeness.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematics is the study of all possible patterns, and is thus bound to describe the world [Linnebo]
     Full Idea: Philosophical structuralism holds that mathematics is the study of abstract structures, or 'patterns'. If mathematics is the study of all possible patterns, then it is inevitable that the world is described by mathematics.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 11.1)
     A reaction: [He cites the physicist John Barrow (2010) for this] For me this is a major idea, because the concept of a pattern gives a link between the natural physical world and the abstract world of mathematics. No platonism is needed.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
'Deductivist' structuralism is just theories, with no commitment to objects, or modality [Linnebo]
     Full Idea: The 'deductivist' version of eliminativist structuralism avoids ontological commitments to mathematical objects, and to modal vocabulary. Mathematics is formulations of various (mostly categorical) theories to describe kinds of concrete structures.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], 1)
     A reaction: 'Concrete' is ambiguous here, as mathematicians use it for the actual working maths, as opposed to the metamathematics. Presumably the structures are postulated rather than described. He cites Russell 1903 and Putnam. It is nominalist.
Non-eliminative structuralism treats mathematical objects as positions in real abstract structures [Linnebo]
     Full Idea: The 'non-eliminative' version of mathematical structuralism takes it to be a fundamental insight that mathematical objects are really just positions in abstract mathematical structures.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: The point here is that it is non-eliminativist because it is committed to the existence of mathematical structures. I oppose this view, since once you are committed to the structures, you may as well admit a vast implausible menagerie of abstracta.
'Modal' structuralism studies all possible concrete models for various mathematical theories [Linnebo]
     Full Idea: The 'modal' version of eliminativist structuralism lifts the deductivist ban on modal notions. It studies what necessarily holds in all concrete models which are possible for various theories.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: [He cites Putnam 1967, and Hellman 1989] If mathematical truths are held to be necessary (which seems to be right), then it seems reasonable to include modal notions, about what is possible, in its study.
'Set-theoretic' structuralism treats mathematics as various structures realised among the sets [Linnebo]
     Full Idea: 'Set-theoretic' structuralism rejects deductive nominalism in favour of a background theory of sets, and mathematics as the various structures realized among the sets. This is often what mathematicians have in mind when they talk about structuralism.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: This is the big shift from 'mathematics can largely be described in set theory' to 'mathematics just is set theory'. If it just is set theory, then which version of set theory? Which axioms? The safe iterative conception, or something bolder?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism differs from traditional Platonism, because the objects depend ontologically on their structure [Linnebo]
     Full Idea: Structuralism can be distinguished from traditional Platonism in that it denies that mathematical objects from the same structure are ontologically independent of one another
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], III)
     A reaction: My instincts strongly cry out against all versions of this. If you are going to be a platonist (rather as if you are going to be religious) you might as well go for it big time and have independent objects, which will then dictate a structure.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Structuralism is right about algebra, but wrong about sets [Linnebo]
     Full Idea: Against extreme views that all mathematical objects depend on the structures to which they belong, or that none do, I defend a compromise view, that structuralists are right about algebraic objects (roughly), but anti-structuralists are right about sets.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], Intro)
In mathematical structuralism the small depends on the large, which is the opposite of physical structures [Linnebo]
     Full Idea: If objects depend on the other objects, this would mean an 'upward' dependence, in that they depend on the structure to which they belong, where the physical realm has a 'downward' dependence, with structures depending on their constituents.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], III)
     A reaction: This nicely captures an intuition I have that there is something wrong with a commitment primarily to 'structures'. Our only conception of such things is as built up out of components. Not that I am committing to mathematical 'components'!
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logical truth is true in all models, so mathematical objects can't be purely logical [Linnebo]
     Full Idea: Modern logic requires that logical truths be true in all models, including ones devoid of any mathematical objects. It follows immediately that the existence of mathematical objects can never be a matter of logic alone.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 2)
     A reaction: Hm. Could there not be a complete set of models for a theory which all included mathematical objects? (I can't answer that).
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Game Formalism has no semantics, and Term Formalism reduces the semantics [Linnebo]
     Full Idea: Game Formalism seeks to banish all semantics from mathematics, and Term Formalism seeks to reduce any such notions to purely syntactic ones.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 3.3)
     A reaction: This approach was stimulated by the need to justify the existence of the imaginary number i. Just say it is a letter!
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionists only accept denumerable sets [Brouwer]
     Full Idea: The intuitionist recognises only the existence of denumerable sets.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.80)
     A reaction: That takes you up to omega, but not beyond, presumably because it then loses sight of the original intuition of 'bare two-oneness' (Idea 12453). I sympathise, but the word 'number' has shifted its meaning a lot these days.
Neo-intuitionism abstracts from the reuniting of moments, to intuit bare two-oneness [Brouwer]
     Full Idea: Neo-intuitionism sees the falling apart of moments, reunited while remaining separated in time, as the fundamental phenomenon of human intellect, passing by abstracting to mathematical thinking, the intuition of bare two-oneness.
     From: Luitzen E.J. Brouwer (Intuitionism and Formalism [1912], p.80)
     A reaction: [compressed] A famous and somewhat obscure idea. He goes on to say that this creates one and two, and all the finite ordinals.
Intuitionist mathematics deduces by introspective construction, and rejects unknown truths [Brouwer]
     Full Idea: Mathematics rigorously treated from the point of view of deducing theorems exclusively by means of introspective construction, is called intuitionistic mathematics. It deviates from classical mathematics, which believes in unknown truths.
     From: Luitzen E.J. Brouwer (Consciousness, Philosophy and Mathematics [1948]), quoted by Stewart Shapiro - Thinking About Mathematics 1.2
     A reaction: Clearly intuitionist mathematics is a close cousin of logical positivism and the verification principle. This view would be anathema to Frege, because it is psychological. Personally I believe in the existence of unknown truths, big time!
7. Existence / C. Structure of Existence / 4. Ontological Dependence
There may be a one-way direction of dependence among sets, and among natural numbers [Linnebo]
     Full Idea: We can give an exhaustive account of the identity of the empty set and its singleton without mentioning infinite sets, and it might be possible to defend the view that one natural number depends on its predecessor but not vice versa.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], V)
     A reaction: Linnebo uses this as one argument against mathematical structuralism, where the small seems to depend on the large. The view of sets rests on the iterative conception, where each level is derived from a lower level. He dismisses structuralism of sets.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We speak of a theory's 'ideological commitments' as well as its 'ontological commitments' [Linnebo]
     Full Idea: Some philosophers speak about a theory's 'ideological commitments' and not just about its 'ontological commitments'.
     From: Øystein Linnebo (Plural Quantification [2008], 5.4)
     A reaction: This is a third strategy for possibly evading one's ontological duty, along with fiddling with the words 'exist' or 'object'. An ideological commitment to something to which one is not actually ontologically committed conjures up stupidity and dogma.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
Ordinary speakers posit objects without concern for ontology [Linnebo]
     Full Idea: Maybe ordinary speakers aren't very concerned about their ontological commitments, and sometimes find it convenient to posit objects.
     From: Øystein Linnebo (Plural Quantification [2008], 2.4)
     A reaction: I think this is the whole truth about the ontological commitment of ordinary language. We bring abstraction under control by pretending it is a world of physical objects. The 'left wing' in politics, 'dark deeds', a 'huge difference'.
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
An 'intrinsic' property is either found in every duplicate, or exists independent of all externals [Linnebo]
     Full Idea: There are two main ways of spelling out an 'intrinsic' property: if and only if it is shared by every duplicate of an object, ...and if and only if the object would have this property even if the rest of the universe were removed or disregarded.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], II)
     A reaction: [He cites B.Weatherson's Stanford Encyclopaedia article] How about an intrinsic property being one which explains its identity, or behaviour, or persistence conditions?
9. Objects / A. Existence of Objects / 1. Physical Objects
The modern concept of an object is rooted in quantificational logic [Linnebo]
     Full Idea: Our modern general concept of an object is given content only in connection with modern quantificational logic.
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §2)
     A reaction: [He mentions Frege, Carnap, Quine and Dummett] This is the first thing to tell beginners in modern analytical metaphysics. The word 'object' is very confusing. I think I prefer 'entity'.
19. Language / A. Nature of Meaning / 5. Meaning as Verification
Intuitonists in mathematics worried about unjustified assertion, as well as contradiction [Brouwer, by George/Velleman]
     Full Idea: The concern of mathematical intuitionists was that the use of certain forms of inference generates, not contradiction, but unjustified assertions.
     From: report of Luitzen E.J. Brouwer (Intuitionism and Formalism [1912]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This seems to be the real origin of the verificationist idea in the theory of meaning. It is a hugely revolutionary idea - that ideas are not only ruled out of court by contradiction, but that there are other criteria which should also be met.
19. Language / C. Assigning Meanings / 3. Predicates
Predicates are 'distributive' or 'non-distributive'; do individuals do what the group does? [Linnebo]
     Full Idea: The predicate 'is on the table' is 'distributive', since some things are on the table if each one is, whereas the predicate 'form a circle' is 'non-distributive', since it is not analytic that when some things form a circle, each one forms a circle.
     From: Øystein Linnebo (Plural Quantification [2008], 1.1)
     A reaction: The first predicate can have singular or plural subjects, but the second requires a plural subject? Hm. 'The rope forms a circle'. The second is example is not true, as well as not analytic.
20. Action / B. Preliminaries of Action / 2. Willed Action / b. Volitionism
The cause of my action is in my will [Shakespeare]
     Full Idea: The cause is in my will. I will not come./That is enough to satisfy the senate./But for your private satisfaction,/Because I love you, I will let you know.
     From: William Shakespeare (Julius Caesar [1599], II.ii)
     A reaction: This asserts the purest form of volitionism, but then qualifies it, because Caesar's will has been influenced by his wife's dreams.
25. Social Practice / E. Policies / 1. War / b. Justice in war
Our obedience to the king erases any crimes we commit for him [Shakespeare]
     Full Idea: We know enough if we know we are the king's men. Our obedience to the king wipes the crime of it out of us.
     From: William Shakespeare (Henry V [1599]), quoted by Michael Walzer - Just and Unjust Wars 03
     A reaction: He is referring to the slaughter of the French servants behind the lines at Agincourt. A classic expression of 'I was just obeying orders', which was rejected at Nurnberg in 1946. Depends on the seriousness of the crime.