Combining Philosophers

All the ideas for Lycophron, David Hilbert and Samir Okasha

unexpand these ideas     |    start again     |     specify just one area for these philosophers


41 ideas

3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
If axioms and their implications have no contradictions, they pass my criterion of truth and existence [Hilbert]
     Full Idea: If the arbitrarily given axioms do not contradict each other with all their consequences, then they are true and the things defined by the axioms exist. For me this is the criterion of truth and existence.
     From: David Hilbert (Letter to Frege 29.12.1899 [1899]), quoted by R Kaplan / E Kaplan - The Art of the Infinite 2 'Mind'
     A reaction: If an axiom says something equivalent to 'fairies exist, but they are totally undetectable', this would seem to avoid contradiction with anything, and hence be true. Hilbert's idea sounds crazy to me. He developed full Formalism later.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
You would cripple mathematics if you denied Excluded Middle [Hilbert]
     Full Idea: Taking the principle of Excluded Middle away from the mathematician would be the same, say, as prohibiting the astronomer from using the telescope or the boxer from using his fists.
     From: David Hilbert (The Foundations of Mathematics [1927], p.476), quoted by Ian Rumfitt - The Boundary Stones of Thought 9.4
     A reaction: [p.476 in Van Heijenoort]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The facts of geometry, arithmetic or statics order themselves into theories [Hilbert]
     Full Idea: The facts of geometry order themselves into a geometry, the facts of arithmetic into a theory of numbers, the facts of statics, electrodynamics into a theory of statics, electrodynamics, or the facts of the physics of gases into a theory of gases.
     From: David Hilbert (Axiomatic Thought [1918], [03])
     A reaction: This is the confident (I would say 'essentialist') view of axioms, which received a bit of a setback with Gödel's Theorems. I certainly agree that the world proposes an order to us - we don't just randomly invent one that suits us.
Axioms must reveal their dependence (or not), and must be consistent [Hilbert]
     Full Idea: If a theory is to serve its purpose of orienting and ordering, it must first give us an overview of the independence and dependence of its propositions, and second give a guarantee of the consistency of all of the propositions.
     From: David Hilbert (Axiomatic Thought [1918], [09])
     A reaction: Gödel's Second theorem showed that the theory can never prove its own consistency, which made the second Hilbert requirement more difficult. It is generally assumed that each of the axioms must be independent of the others.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Hilbert wanted to prove the consistency of all of mathematics (which realists take for granted) [Hilbert, by Friend]
     Full Idea: Hilbert wanted to derive ideal mathematics from the secure, paradox-free, finite mathematics (known as 'Hilbert's Programme'). ...Note that for the realist consistency is not something we need to prove; it is a precondition of thought.
     From: report of David Hilbert (works [1900], 6.7) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: I am an intuitive realist, though I am not so sure about that on cautious reflection. Compare the claims that there are reasons or causes for everything. Reality cannot contain contradicitions (can it?). Contradictions would be our fault.
I aim to establish certainty for mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is the clearest statement of the famous Hilbert Programme, which is said to have been brought to an abrupt end by Gödel's Incompleteness Theorems.
We believe all mathematical problems are solvable [Hilbert]
     Full Idea: The thesis that every mathematical problem is solvable - we are all convinced that it really is so.
     From: David Hilbert (On the Infinite [1925], p.200)
     A reaction: This will include, for example, Goldbach's Conjecture (every even is the sum of two primes), which is utterly simple but with no proof anywhere in sight.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Hilbert aimed to eliminate number from geometry [Hilbert, by Hart,WD]
     Full Idea: One of Hilbert's aims in 'The Foundations of Geometry' was to eliminate number [as measure of lengths and angles] from geometry.
     From: report of David Hilbert (Foundations of Geometry [1899]) by William D. Hart - The Evolution of Logic 2
     A reaction: Presumably this would particularly have to include the elimination of ratios (rather than actual specific lengths).
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
No one shall drive us out of the paradise the Cantor has created for us [Hilbert]
     Full Idea: No one shall drive us out of the paradise the Cantor has created for us.
     From: David Hilbert (On the Infinite [1925], p.191), quoted by James Robert Brown - Philosophy of Mathematics
     A reaction: This is Hilbert's famous refusal to accept any account of mathematics, such as Kant's, which excludes actual infinities. Cantor had laid out a whole glorious hierarchy of different infinities.
We extend finite statements with ideal ones, in order to preserve our logic [Hilbert]
     Full Idea: To preserve the simple formal rules of ordinary Aristotelian logic, we must supplement the finitary statements with ideal statements.
     From: David Hilbert (On the Infinite [1925], p.195)
     A reaction: I find very appealing the picture of mathematics as rooted in the physical world, and then gradually extended by a series of 'idealisations', which should perhaps be thought of as fictions.
Only the finite can bring certainty to the infinite [Hilbert]
     Full Idea: Operating with the infinite can be made certain only by the finitary.
     From: David Hilbert (On the Infinite [1925], p.201)
     A reaction: See 'Compactness' for one aspect of this claim. I think Hilbert was fighting a rearguard action, and his idea now has few followers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The idea of an infinite totality is an illusion [Hilbert]
     Full Idea: Just as in the limit processes of the infinitesimal calculus, the infinitely large and small proved to be a mere figure of speech, so too we must realise that the infinite in the sense of an infinite totality, used in deductive methods, is an illusion.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is a very authoritative rearguard action. I no longer think the dispute matters much, it being just a dispute over a proposed new meaning for the word 'number'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
There is no continuum in reality to realise the infinitely small [Hilbert]
     Full Idea: A homogeneous continuum which admits of the sort of divisibility needed to realise the infinitely small is nowhere to be found in reality.
     From: David Hilbert (On the Infinite [1925], p.186)
     A reaction: He makes this remark as a response to Planck's new quantum theory (the year before the big works of Heisenberg and Schrödinger). Personally I don't see why infinities should depend on the physical world, since they are imaginary.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
To decide some questions, we must study the essence of mathematical proof itself [Hilbert]
     Full Idea: It is necessary to study the essence of mathematical proof itself if one wishes to answer such questions as the one about decidability in a finite number of operations.
     From: David Hilbert (Axiomatic Thought [1918], [53])
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid axioms concerns possibilities of construction, but Hilbert's assert the existence of objects [Hilbert, by Chihara]
     Full Idea: Hilbert's geometrical axioms were existential in character, asserting the existence of certain geometrical objects (points and lines). Euclid's postulates do not assert the existence of anything; they assert the possibility of certain constructions.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Charles Chihara - A Structural Account of Mathematics 01.1
     A reaction: Chihara says geometry was originally understood modally, but came to be understood existentially. It seems extraordinary to me that philosophers of mathematics can have become more platonist over the centuries.
Hilbert's formalisation revealed implicit congruence axioms in Euclid [Hilbert, by Horsten/Pettigrew]
     Full Idea: In his formal investigation of Euclidean geometry, Hilbert uncovered congruence axioms that implicitly played a role in Euclid's proofs but were not explicitly recognised.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Horsten,L/Pettigrew,R - Mathematical Methods in Philosophy 2
     A reaction: The writers are offering this as a good example of the benefits of a precise and formal approach to foundational questions. It's hard to disagree, but dispiriting if you need a PhD in maths before you can start doing philosophy.
Hilbert's geometry is interesting because it captures Euclid without using real numbers [Hilbert, by Field,H]
     Full Idea: Hilbert's formulation of the Euclidean theory is of special interest because (besides being rigorously axiomatised) it does not employ the real numbers in the axioms.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Hartry Field - Science without Numbers 3
     A reaction: Notice that this job was done by Hilbert, and not by the fictionalist Hartry Field.
The whole of Euclidean geometry derives from a basic equation and transformations [Hilbert]
     Full Idea: The linearity of the equation of the plane and of the orthogonal transformation of point-coordinates is completely adequate to produce the whole broad science of spatial Euclidean geometry purely by means of analysis.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This remark comes from the man who succeeded in producing modern axioms for geometry (in 1897), so he knows what he is talking about. We should not be wholly pessimistic about Hilbert's ambitious projects. He had to dig deeper than this idea...
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Number theory just needs calculation laws and rules for integers [Hilbert]
     Full Idea: The laws of calculation and the rules of integers suffice for the construction of number theory.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This is the confident Hilbert view that the whole system can be fully spelled out. Gödel made this optimism more difficult.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The existence of an arbitrarily large number refutes the idea that numbers come from experience [Hilbert]
     Full Idea: The standpoint of pure experience seems to me to be refuted by the objection that the existence, possible or actual, of an arbitrarily large number can never be derived through experience, that is, through experiment.
     From: David Hilbert (On the Foundations of Logic and Arithmetic [1904], p.130)
     A reaction: Alternatively, empiricism refutes infinite numbers! No modern mathematician will accept that, but you wonder in what sense the proposed entities qualify as 'numbers'.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logic already contains some arithmetic, so the two must be developed together [Hilbert]
     Full Idea: In the traditional exposition of the laws of logic certain fundamental arithmetic notions are already used, for example in the notion of set, and to some extent also of number. Thus we turn in a circle, and a partly simultaneous development is required.
     From: David Hilbert (On the Foundations of Logic and Arithmetic [1904], p.131)
     A reaction: If the Axiom of Infinity is meant, it may be possible to purge the arithmetic from the logic. Then the challenge to derive arithmetic from it becomes rather tougher.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
The grounding of mathematics is 'in the beginning was the sign' [Hilbert]
     Full Idea: The solid philosophical attitude that I think is required for the grounding of pure mathematics is this: In the beginning was the sign.
     From: David Hilbert (works [1900]), quoted by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Why did people invent those particular signs? Presumably they were meant to designate something, in the world or in our experience.
Hilbert substituted a syntactic for a semantic account of consistency [Hilbert, by George/Velleman]
     Full Idea: Hilbert replaced a semantic construal of inconsistency (that the theory entails a statement that is necessarily false) by a syntactic one (that the theory formally derives the statement (0 =1 ∧ 0 not-= 1).
     From: report of David Hilbert (works [1900]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Finding one particular clash will pinpoint the notion of inconsistency, but it doesn't seem to define what it means, since the concept has very wide application.
Hilbert said (to block paradoxes) that mathematical existence is entailed by consistency [Hilbert, by Potter]
     Full Idea: Hilbert proposed to circuvent the paradoxes by means of the doctrine (already proposed by Poincaré) that in mathematics consistency entails existence.
     From: report of David Hilbert (On the Concept of Number [1900], p.183) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 19 'Exist'
     A reaction: Interesting. Hilbert's idea has struck me as weird, but it makes sense if its main motive is to block the paradoxes. Roughly, the idea is 'it exists if it isn't paradoxical'. A low bar for existence (but then it is only in mathematics!).
The subject matter of mathematics is immediate and clear concrete symbols [Hilbert]
     Full Idea: The subject matter of mathematics is the concrete symbols themselves whose structure is immediately clear and recognisable.
     From: David Hilbert (On the Infinite [1925], p.192)
     A reaction: I don't think many people will agree with Hilbert here. Does he mean token-symbols or type-symbols? You can do maths in your head, or with different symbols. If type-symbols, you have to explain what a type is.
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Hilbert aimed to prove the consistency of mathematics finitely, to show infinities won't produce contradictions [Hilbert, by George/Velleman]
     Full Idea: Hilbert's project was to establish the consistency of classical mathematics using just finitary means, to convince all parties that no contradictions will follow from employing the infinitary notions and reasoning.
     From: report of David Hilbert (works [1900]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This is the project which was badly torpedoed by Gödel's Second Incompleteness Theorem.
Mathematics divides in two: meaningful finitary statements, and empty idealised statements [Hilbert]
     Full Idea: We can conceive mathematics to be a stock of two kinds of formulas: first, those to which the meaningful communications of finitary statements correspond; and secondly, other formulas which signify nothing and which are ideal structures of our theory.
     From: David Hilbert (On the Infinite [1925], p.196), quoted by David Bostock - Philosophy of Mathematics 6.1
7. Existence / C. Structure of Existence / 2. Reduction
Multiple realisability is said to make reduction impossible [Okasha]
     Full Idea: Philosophers have often invoked multiple realisability to explain why psychology cannot be reduced to physics or chemistry, but in principle the explanation works for any higher-level science.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 3)
     A reaction: He gives the example of a 'cell' in biology, which can be implemented in all sorts of ways. Presumably that can be reduced to many sorts of physics, but not just to one sort. The high level contains patterns that vanish at the low level.
11. Knowledge Aims / B. Certain Knowledge / 1. Certainty
My theory aims at the certitude of mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184), quoted by James Robert Brown - Philosophy of Mathematics Ch.5
     A reaction: This dream is famous for being shattered by Gödel's Incompleteness Theorem a mere six years later. Neverless there seem to be more limited certainties which are accepted in mathematics. The certainty of the whole of arithmetic is beyond us.
13. Knowledge Criteria / A. Justification Problems / 3. Internal or External / a. Pro-internalism
Knowledge is mind and knowing 'cohabiting' [Lycophron, by Aristotle]
     Full Idea: Lycophron has it that knowledge is the 'cohabitation' (rather than participation or synthesis) of knowing and the soul.
     From: report of Lycophron (fragments/reports [c.375 BCE]) by Aristotle - Metaphysics 1045b
     A reaction: This sounds like a rather passive and inert relationship. Presumably knowing something implies the possibility of acting on it.
14. Science / A. Basis of Science / 3. Experiment
Randomised Control Trials have a treatment and a control group, chosen at random [Okasha]
     Full Idea: In the Randomised Controlled Trial for a new drug, patients are divided at random into a treatment group who receive the drug, and a control group who do not. Randomisation is important to eliminate confounding factors.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: [compressed] Devised in the 1930s, and a major breakthrough in methodology for that kind of trial. Psychologists use the method all the time. Some theorists say it is the only reliable method.
Not all sciences are experimental; astronomy relies on careful observation [Okasha]
     Full Idea: Not all sciences are experimental - astronomers obviously cannot do experiments on the heavens, but have to content themselves with careful observation instead.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 1)
     A reaction: Biology too. Psychology tries hard to be experimental, but I doubt whether the main theories emerge from experiments.
14. Science / A. Basis of Science / 6. Falsification
The discoverers of Neptune didn't change their theory because of an anomaly [Okasha]
     Full Idea: Adams and Leverrier began with Newton's theory of gravity, which made an incorrect prediction about the orbit of Uranus. They explained away the conflicting observations by postulating a new planet, Neptune.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 1)
     A reaction: The falsificationists can say that the anomalous observation did not falsify the theory, because they didn't know quite what they were observing. It was not in fact an anomaly for Newtonian theory at all.
Science mostly aims at confirming theories, rather than falsifying them [Okasha]
     Full Idea: The goal of science is not solely to refute theories, but also to determine which theories are true (or probably true). When a scientist collects data …they are trying to show that their own theory is true.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: This is the aim of 'accommodation' to a wide set of data, rather than prediction or refutation.
14. Science / B. Scientific Theories / 1. Scientific Theory
Theories with unobservables are underdetermined by the evidence [Okasha]
     Full Idea: According to anti-realists, scientific theories which posit unobservable entities are underdetermined by the empirical data - there will always be a number of competing theories which can account for the data equally well.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 4)
     A reaction: The fancy version is Putnam's model theoretic argument, explored by Tim Button. The reply, apparently, is that there are other criteria for theory choice, apart from the data. And we don't have to actually observe everything in a theory.
14. Science / B. Scientific Theories / 5. Commensurability
Two things can't be incompatible if they are incommensurable [Okasha]
     Full Idea: If two things are incommensurable they cannot be incompatible.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 5)
     A reaction: Kuhn had claimed that two rival theories are incompatible, which forces the paradigm shift. He can't stop the slide off into total relativism. The point is there cannot be a conflict if there cannot even be a comparison.
14. Science / C. Induction / 1. Induction
Induction is inferences from examined to unexamined instances of a given kind [Okasha]
     Full Idea: Some philosophers use 'inductive' to just mean not deductive, …but we reserve it for inferences from examined to unexamined instances of a given kind.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: The instances must at least be comparable. Must you know the kind before you start? Surely you can examine a sequence of things, trying to decide whether or not they are of one kind? Is checking the uniformity of a kind induction?
14. Science / C. Induction / 6. Bayes's Theorem
If the rules only concern changes of belief, and not the starting point, absurd views can look ratiional [Okasha]
     Full Idea: If the only objective constraints concern how we should change our credences, but what our initial credences should be is entirely subjective, then individuals with very bizarre opinions about the world will count as perfectly rational.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: The important rationality has to be the assessement of a diverse batch of evidence, for which there can never be any rules or mathematics.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
By digging deeper into the axioms we approach the essence of sciences, and unity of knowedge [Hilbert]
     Full Idea: By pushing ahead to ever deeper layers of axioms ...we also win ever-deeper insights into the essence of scientific thought itself, and become ever more conscious of the unity of our knowledge.
     From: David Hilbert (Axiomatic Thought [1918], [56])
     A reaction: This is the less fashionable idea that scientific essentialism can also be applicable in the mathematic sciences, centring on the project of axiomatisation for logic, arithmetic, sets etc.
27. Natural Reality / A. Classical Physics / 1. Mechanics / b. Laws of motion
Galileo refuted the Aristotelian theory that heavier objects fall faster [Okasha]
     Full Idea: Galileo's most enduring contribution lay in mechanics, where he refuted the Aristotelian theory that heavier bodies fall faster than lighter.
     From: Samir Okasha (Philosophy of Science: Very Short Intro (2nd ed) [2016], 2)
     A reaction: This must the first idea in the theory of mechanics, allowing mathematical treatment and accurate comparisons.
27. Natural Reality / G. Biology / 5. Species
Virtually all modern views of speciation rest on relational rather than intrinsic features [Okasha]
     Full Idea: On all modern species concepts (except the phenetic), the property in virtue of which a particular organism belongs to one species rather than another is a relational rather than an intrinsic property of the organism.
     From: Samir Okasha (Darwinian Metaphysics: Species and Essentialism [2002], p.201), quoted by Michael Devitt - Resurrecting Biological Essentialism 4
     A reaction: I am in sympathy with Devitt's attack on this view, for the same reason that I take relational explanations of almost anything (such as the mind) to be inadequate. We need to know the intrinsic features that enable the relations.