Combining Philosophers

All the ideas for Lynch,MP/Glasgow,JM, Charles Chihara and Richard Dedekind

unexpand these ideas     |    start again     |     specify just one area for these philosophers


54 ideas

2. Reason / D. Definition / 9. Recursive Definition
Dedekind proved definition by recursion, and thus proved the basic laws of arithmetic [Dedekind, by Potter]
     Full Idea: Dedkind gave a rigorous proof of the principle of definition by recursion, permitting recursive definitions of addition and multiplication, and hence proofs of the familiar arithmetical laws.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 13 'Deriv'
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Realists about sets say there exists a null set in the real world, with no members [Chihara]
     Full Idea: In the Gödelian realistic view of set theory the statement that there is a null set as the assertion of the existence in the real world of a set that has no members.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 11.6)
     A reaction: It seems to me obvious that such a claim is nonsense on stilts. 'In the beginning there was the null set'?
We only know relational facts about the empty set, but nothing intrinsic [Chihara]
     Full Idea: Everything we know about the empty set is relational; we know that nothing is the membership relation to it. But what do we know about its 'intrinsic properties'?
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.5)
     A reaction: Set theory seems to depend on the concept of the empty set. Modern theorists seem over-influenced by the Quine-Putnam view, that if science needs it, we must commit ourselves to its existence.
In simple type theory there is a hierarchy of null sets [Chihara]
     Full Idea: In simple type theory, there is a null set of type 1, a null set of type 2, a null set of type 3..... (Quine has expressed his distaste for this).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 07.4)
     A reaction: It is bad enough trying to individuate the unique null set, without whole gangs of them drifting indistinguishably through the logical fog. All rational beings should share Quine's distaste, even if Quine is wrong.
The null set is a structural position which has no other position in membership relation [Chihara]
     Full Idea: In the structuralist view of sets, in structures of a certain sort the null set is taken to be a position (or point) that will be such that no other position (or point) will be in the membership relation to it.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 11.6)
     A reaction: It would be hard to conceive of something having a place in a structure if nothing had a relation to it, so is the null set related to singeton sets but not there members. It will be hard to avoid Platonism here. Set theory needs the null set.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
What is special about Bill Clinton's unit set, in comparison with all the others? [Chihara]
     Full Idea: What is it about the intrinsic properties of just that one unit set in virtue of which Bill Clinton is related to just it and not to any other unit sets in the set-theoretical universe?
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.5)
     A reaction: If we all kept pet woodlice, we had better not hold a wood louse rally, or we might go home with the wrong one. My singleton seems seems remarkably like yours. Could we, perhaps, swap, just for a change?
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
An infinite set maps into its own proper subset [Dedekind, by Reck/Price]
     Full Idea: A set is 'Dedekind-infinite' iff there exists a one-to-one function that maps a set into a proper subset of itself.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], §64) by E Reck / M Price - Structures and Structuralism in Phil of Maths n 7
     A reaction: Sounds as if it is only infinite if it is contradictory, or doesn't know how big it is!
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
We have the idea of self, and an idea of that idea, and so on, so infinite ideas are available [Dedekind, by Potter]
     Full Idea: Dedekind had an interesting proof of the Axiom of Infinity. He held that I have an a priori grasp of the idea of my self, and that every idea I can form the idea of that idea. Hence there are infinitely many objects available to me a priori.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], no. 66) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 12 'Numb'
     A reaction: Who said that Descartes' Cogito was of no use? Frege endorsed this, as long as the ideas are objective and not subjective.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
The set theorist cannot tell us what 'membership' is [Chihara]
     Full Idea: The set theorist cannot tell us anything about the true relationship of membership.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.5)
     A reaction: If three unrelated objects suddenly became members of a set, it is hard to see how the world would have changed, except in the minds of those thinking about it.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
ZFU refers to the physical world, when it talks of 'urelements' [Chihara]
     Full Idea: ZFU set theory talks about physical objects (the urelements), and hence is in some way about the physical world.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 11.5)
     A reaction: This sounds a bit surprising, given that the whole theory would appear to be quite unaffected if God announced that idealism is true and there are no physical objects.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Could we replace sets by the open sentences that define them? [Chihara, by Bostock]
     Full Idea: Chihara proposes to replace all sets by reference to the open sentences that define them.
     From: report of Charles Chihara (Ontology and the Vicious Circle Principle [1973]) by David Bostock - Philosophy of Mathematics 9.B.4
     A reaction: This depends on predicativism, because that stipulates the definitions will be available (cos if it ain't definable it ain't there). Chihara went on to define the open sentences in terms of the possibility of uttering them. Cf. propositional functions.
A pack of wolves doesn't cease when one member dies [Chihara]
     Full Idea: A pack of wolves is not thought to go out of existence just because some member of the pack is killed.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 07.5)
     A reaction: The point is that the formal extensional notion of a set doesn't correspond to our common sense notion of a group or class. Even a highly scientific theory about wolves needs a loose notion of a wolf pack.
We could talk of open sentences, instead of sets [Chihara, by Shapiro]
     Full Idea: Chihara's programme is to replace talk of sets with talk of open sentences. Instead of speaking of the set of all cats, we talk about the open sentence 'x is a cat'.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Thinking About Mathematics 9.2
     A reaction: As Shapiro points out, this is following up Russell's view that sets should be replaced with talk of properties. Chihara is expressing it more linguistically. I'm in favour of any attempt to get rid of sets.
4. Formal Logic / G. Formal Mereology / 1. Mereology
Dedekind originally thought more in terms of mereology than of sets [Dedekind, by Potter]
     Full Idea: Dedekind plainly had fusions, not collections, in mind when he avoided the empty set and used the same symbol for membership and inclusion - two tell-tale signs of a mereological conception.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], 2-3) by Michael Potter - Set Theory and Its Philosophy 02.1
     A reaction: Potter suggests that mathematicians were torn between mereology and sets, and eventually opted whole-heartedly for sets. Maybe this is only because set theory was axiomatised by Zermelo some years before Lezniewski got to mereology.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
The mathematics of relations is entirely covered by ordered pairs [Chihara]
     Full Idea: Everything one needs to do with relations in mathematics can be done by taking a relation to be a set of ordered pairs. (Ordered triples etc. can be defined as order pairs, so that <x,y,z> is <x,<y,z>>).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 07.2)
     A reaction: How do we distinguish 'I own my cat' from 'I love my cat'? Or 'I quite like my cat' from 'I adore my cat'? Nevertheless, this is an interesting starting point for a discussion of relations.
5. Theory of Logic / K. Features of Logics / 2. Consistency
Sentences are consistent if they can all be true; for Frege it is that no contradiction can be deduced [Chihara]
     Full Idea: In first-order logic a set of sentences is 'consistent' iff there is an interpretation (or structure) in which the set of sentences is true. ..For Frege, though, a set of sentences is consistent if it is not possible to deduce a contradiction from it.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 02.1)
     A reaction: The first approach seems positive, the second negative. Frege seems to have a higher standard, which is appealing, but the first one seems intuitively right. There is a possible world where this could work.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Numbers are free creations of the human mind, to understand differences [Dedekind]
     Full Idea: Numbers are free creations of the human mind; they serve as a means of apprehending more easily and more sharply the difference of things.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], Pref)
     A reaction: Does this fit real numbers and complex numbers, as well as natural numbers? Frege was concerned by the lack of objectivity in this sort of view. What sort of arithmetic might the Martians have created? Numbers register sameness too.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Dedekind defined the integers, rationals and reals in terms of just the natural numbers [Dedekind, by George/Velleman]
     Full Idea: It was primarily Dedekind's accomplishment to define the integers, rationals and reals, taking only the system of natural numbers for granted.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by A.George / D.J.Velleman - Philosophies of Mathematics Intro
Ordinals can define cardinals, as the smallest ordinal that maps the set [Dedekind, by Heck]
     Full Idea: Dedekind and Cantor said the cardinals may be defined in terms of the ordinals: The cardinal number of a set S is the least ordinal onto whose predecessors the members of S can be mapped one-one.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 5
Order, not quantity, is central to defining numbers [Dedekind, by Monk]
     Full Idea: Dedekind said that the notion of order, rather than that of quantity, is the central notion in the definition of number.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Ray Monk - Bertrand Russell: Spirit of Solitude Ch.4
     A reaction: Compare Aristotle's nice question in Idea 646. My intuition is that quantity comes first, because I'm not sure HOW you could count, if you didn't think you were changing the quantity each time. Why does counting go in THAT particular order? Cf. Idea 8661.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Dedekind's ordinals are just members of any progression whatever [Dedekind, by Russell]
     Full Idea: Dedekind's ordinals are not essentially either ordinals or cardinals, but the members of any progression whatever.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - The Principles of Mathematics §243
     A reaction: This is part of Russell's objection to Dedekind's structuralism. The question is always why these beautiful structures should actually be considered as numbers. I say, unlike Russell, that the connection to counting is crucial.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
We want the essence of continuity, by showing its origin in arithmetic [Dedekind]
     Full Idea: It then only remained to discover its true origin in the elements of arithmetic and thus at the same time to secure a real definition of the essence of continuity.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], Intro)
     A reaction: [He seeks the origin of the theorem that differential calculus deals with continuous magnitude, and he wants an arithmetical rather than geometrical demonstration; the result is his famous 'cut'].
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A cut between rational numbers creates and defines an irrational number [Dedekind]
     Full Idea: Whenever we have to do a cut produced by no rational number, we create a new, an irrational number, which we regard as completely defined by this cut.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], §4)
     A reaction: Fine quotes this to show that the Dedekind Cut creates the irrational numbers, rather than hitting them. A consequence is that the irrational numbers depend on the rational numbers, and so can never be identical with any of them. See Idea 10573.
Dedekind's axiom that his Cut must be filled has the advantages of theft over honest toil [Dedekind, by Russell]
     Full Idea: Dedekind set up the axiom that the gap in his 'cut' must always be filled …The method of 'postulating' what we want has many advantages; they are the same as the advantages of theft over honest toil. Let us leave them to others.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - Introduction to Mathematical Philosophy VII
     A reaction: This remark of Russell's is famous, and much quoted in other contexts, but I have seen the modern comment that it is grossly unfair to Dedekind.
Dedekind says each cut matches a real; logicists say the cuts are the reals [Dedekind, by Bostock]
     Full Idea: One view, favoured by Dedekind, is that the cut postulates a real number for each cut in the rationals; it does not identify real numbers with cuts. ....A view favoured by later logicists is simply to identify a real number with a cut.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by David Bostock - Philosophy of Mathematics 4.4
     A reaction: Dedekind is the patriarch of structuralism about mathematics, so he has little interest in the existenc of 'objects'.
I say the irrational is not the cut itself, but a new creation which corresponds to the cut [Dedekind]
     Full Idea: Of my theory of irrationals you say that the irrational number is nothing else than the cut itself, whereas I prefer to create something new (different from the cut), which corresponds to the cut. We have the right to claim such a creative power.
     From: Richard Dedekind (Letter to Weber [1888], 1888 Jan), quoted by Stewart Shapiro - Philosophy of Mathematics 5.4
     A reaction: Clearly a cut will not locate a unique irrational number, so something more needs to be done. Shapiro remarks here that for Dedekind numbers are objects.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
In counting we see the human ability to relate, correspond and represent [Dedekind]
     Full Idea: If we scrutinize closely what is done in counting an aggregate of things, we see the ability of the mind to relate things to things, to let a thing correspond to a thing, or to represent a thing by a thing, without which no thinking is possible.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], Pref)
     A reaction: I don't suppose it occurred to Dedekind that he was reasserting Hume's observation about the fundamental psychology of thought. Is the origin of our numerical ability of philosophical interest?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic is just the consequence of counting, which is the successor operation [Dedekind]
     Full Idea: I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetic act, that of counting, and counting itself is nothing else than the successive creation of the infinite series of positive integers.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], §1)
     A reaction: Thus counting roots arithmetic in the world, the successor operation is the essence of counting, and the Dedekind-Peano axioms are built around successors, and give the essence of arithmetic. Unfashionable now, but I love it. Intransitive counting?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / b. Mark of the infinite
A system S is said to be infinite when it is similar to a proper part of itself [Dedekind]
     Full Idea: A system S is said to be infinite when it is similar to a proper part of itself.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], V.64)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
If x changes by less and less, it must approach a limit [Dedekind]
     Full Idea: If in the variation of a magnitude x we can for every positive magnitude δ assign a corresponding position from and after which x changes by less than δ then x approaches a limiting value.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], p.27), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.7
     A reaction: [Kitcher says he 'showed' this, rather than just stating it]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Analytic geometry gave space a mathematical structure, which could then have axioms [Chihara]
     Full Idea: With the invention of analytic geometry (by Fermat and then Descartes) physical space could be represented as having a mathematical structure, which could eventually lead to its axiomatization (by Hilbert).
     From: Charles Chihara (A Structural Account of Mathematics [2004], 02.3)
     A reaction: The idea that space might have axioms seems to be pythagoreanism run riot. I wonder if there is some flaw at the heart of Einstein's General Theory because of this?
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Dedekind gives a base number which isn't a successor, then adds successors and induction [Dedekind, by Hart,WD]
     Full Idea: Dedekind's natural numbers: an object is in a set (0 is a number), a function sends the set one-one into itself (numbers have unique successors), the object isn't a value of the function (it isn't a successor), plus induction.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by William D. Hart - The Evolution of Logic 5
     A reaction: Hart notes that since this refers to sets of individuals, it is a second-order account of numbers, what we now call 'Second-Order Peano Arithmetic'.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Zero is a member, and all successors; numbers are the intersection of sets satisfying this [Dedekind, by Bostock]
     Full Idea: Dedekind's idea is that the set of natural numbers has zero as a member, and also has as a member the successor of each of its members, and it is the smallest set satisfying this condition. It is the intersection of all sets satisfying the condition.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by David Bostock - Philosophy of Mathematics 4.4
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Categoricity implies that Dedekind has characterised the numbers, because it has one domain [Rumfitt on Dedekind]
     Full Idea: It is Dedekind's categoricity result that convinces most of us that he has articulated our implicit conception of the natural numbers, since it entitles us to speak of 'the' domain (in the singular, up to isomorphism) of natural numbers.
     From: comment on Richard Dedekind (Nature and Meaning of Numbers [1888]) by Ian Rumfitt - The Boundary Stones of Thought 9.1
     A reaction: The main rival is set theory, but that has an endlessly expanding domain. He points out that Dedekind needs second-order logic to achieve categoricity. Rumfitt says one could also add to the 1st-order version that successor is an ancestral relation.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Induction is proved in Dedekind, an axiom in Peano; the latter seems simpler and clearer [Dedekind, by Russell]
     Full Idea: Dedekind proves mathematical induction, while Peano regards it as an axiom, ...and Peano's method has the advantage of simplicity, and a clearer separation between the particular and the general propositions of arithmetic.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - The Principles of Mathematics §241
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Dedekind originated the structuralist conception of mathematics [Dedekind, by MacBride]
     Full Idea: Dedekind is the philosopher-mathematician with whom the structuralist conception originates.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], §3 n13) by Fraser MacBride - Structuralism Reconsidered
     A reaction: Hellman says the idea grew naturally out of modern mathematics, and cites Hilbert's belief that furniture would do as mathematical objects.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Dedekindian abstraction talks of 'positions', where Cantorian abstraction talks of similar objects [Dedekind, by Fine,K]
     Full Idea: Dedekindian abstraction says mathematical objects are 'positions' in a model, while Cantorian abstraction says they are the result of abstracting on structurally similar objects.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Kit Fine - Cantorian Abstraction: Recon. and Defence §6
     A reaction: The key debate among structuralists seems to be whether or not they are committed to 'objects'. Fine rejects the 'austere' version, which says that objects have no properties. Either version of structuralism can have abstraction as its basis.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
We can replace existence of sets with possibility of constructing token sentences [Chihara, by MacBride]
     Full Idea: Chihara's 'constructability theory' is nominalist - mathematics is reducible to a simple theory of types. Instead of talk of sets {x:x is F}, we talk of open sentences Fx defining them. Existence claims become constructability of sentence tokens.
     From: report of Charles Chihara (A Structural Account of Mathematics [2004]) by Fraser MacBride - Review of Chihara's 'Structural Acc of Maths' p.81
     A reaction: This seems to be approaching the problem in a Fregean way, by giving an account of the semantics. Chihara is trying to evade the Quinean idea that assertion is ontological commitment. But has Chihara retreated too far? How does he assert existence?
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Chihara's system is a variant of type theory, from which he can translate sentences [Chihara, by Shapiro]
     Full Idea: Chihara's system is a version of type theory. Translate thus: replace variables of sets of type n with level n variables over open sentences, replace membership/predication with satisfaction, and high quantifiers with constructability quantifiers.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Philosophy of Mathematics 7.4
We can replace type theory with open sentences and a constructibility quantifier [Chihara, by Shapiro]
     Full Idea: Chihara's system is similar to simple type theory; he replaces each type with variables over open sentences, replaces membership (or predication) with satisfaction, and replaces quantifiers over level 1+ variables with constructability quantifiers.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Thinking About Mathematics 9.2
     A reaction: This is interesting for showing that type theory may not be dead. The revival of supposedly dead theories is the bread-and-butter of modern philosophy.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Introduce a constructibility quantifiers (Cx)Φ - 'it is possible to construct an x such that Φ' [Chihara, by Shapiro]
     Full Idea: Chihara has proposal a modal primitive, a 'constructability quantifier'. Syntactically it behaves like an ordinary quantifier: Φ is a formula, and x a variable. Then (Cx)Φ is a formula, read as 'it is possible to construct an x such that Φ'.
     From: report of Charles Chihara (Constructibility and Mathematical Existence [1990]) by Stewart Shapiro - Philosophy of Mathematics 7.4
     A reaction: We only think natural numbers are infinite because we see no barrier to continuing to count, i.e. to construct new numbers. We accept reals when we know how to construct them. Etc. Sounds promising to me (though not to Shapiro).
7. Existence / C. Structure of Existence / 3. Levels of Reality
A necessary relation between fact-levels seems to be a further irreducible fact [Lynch/Glasgow]
     Full Idea: It seems unavoidable that the facts about logically necessary relations between levels of facts are themselves logically distinct further facts, irreducible to the microphysical facts.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], C)
     A reaction: I'm beginning to think that rejecting every theory of reality that is proposed by carefully exposing some infinite regress hidden in it is a rather lazy way to do philosophy. Almost as bad as rejecting anything if it can't be defined.
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
If some facts 'logically supervene' on some others, they just redescribe them, adding nothing [Lynch/Glasgow]
     Full Idea: Logical supervenience, restricted to individuals, seems to imply strong reduction. It is said that where the B-facts logically supervene on the A-facts, the B-facts simply re-describe what the A-facts describe, and the B-facts come along 'for free'.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], C)
     A reaction: This seems to be taking 'logically' to mean 'analytically'. Presumably an entailment is logically supervenient on its premisses, and may therefore be very revealing, even if some people think such things are analytic.
7. Existence / D. Theories of Reality / 6. Physicalism
Nonreductive materialism says upper 'levels' depend on lower, but don't 'reduce' [Lynch/Glasgow]
     Full Idea: The root intuition behind nonreductive materialism is that reality is composed of ontologically distinct layers or levels. …The upper levels depend on the physical without reducing to it.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], B)
     A reaction: A nice clear statement of a view which I take to be false. This relationship is the sort of thing that drives people fishing for an account of it to use the word 'supervenience', which just says two things seem to hang out together. Fluffy materialism.
The hallmark of physicalism is that each causal power has a base causal power under it [Lynch/Glasgow]
     Full Idea: Jessica Wilson (1999) says what makes physicalist accounts different from emergentism etc. is that each individual causal power associated with a supervenient property is numerically identical with a causal power associated with its base property.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], n 11)
     A reaction: Hence the key thought in so-called (serious, rather than self-evident) 'emergentism' is so-called 'downward causation', which I take to be an idle daydream.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
If a successful theory confirms mathematics, presumably a failed theory disconfirms it? [Chihara]
     Full Idea: If mathematics shares whatever confirmation accrues to the theories using it, would it not be reasonable to suppose that mathematics shares whatever disconfirmation accrues to the theories using it?
     From: Charles Chihara (A Structural Account of Mathematics [2004], 05.8)
     A reaction: Presumably Quine would bite the bullet here, although maths is much closer to the centre of his web of belief, and so far less likely to require adjustment. In practice, though, mathematics is not challenged whenever an experiment fails.
No scientific explanation would collapse if mathematical objects were shown not to exist [Chihara]
     Full Idea: Evidently, no scientific explanations of specific phenomena would collapse as a result of any hypothetical discovery that no mathematical objects exist.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 09.1)
     A reaction: It is inconceivable that anyone would challenge this claim. A good model seems to be drama; a play needs commitment from actors and audience, even when we know it is fiction. The point is that mathematics doesn't collapse either.
9. Objects / A. Existence of Objects / 3. Objects in Thought
A thing is completely determined by all that can be thought concerning it [Dedekind]
     Full Idea: A thing (an object of our thought) is completely determined by all that can be affirmed or thought concerning it.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], I.1)
     A reaction: How could you justify this as an observation? Why can't there be unthinkable things (even by God)? Presumably Dedekind is offering a stipulative definition, but we may then be confusing epistemology with ontology.
18. Thought / E. Abstraction / 3. Abstracta by Ignoring
Dedekind said numbers were abstracted from systems of objects, leaving only their position [Dedekind, by Dummett]
     Full Idea: By applying the operation of abstraction to a system of objects isomorphic to the natural numbers, Dedekind believed that we obtained the abstract system of natural numbers, each member having only properties consequent upon its position.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Michael Dummett - The Philosophy of Mathematics
     A reaction: Dummett is scornful of the abstractionism. He cites Benacerraf as a modern non-abstractionist follower of Dedekind's view. There seems to be a suspicion of circularity in it. How many objects will you abstract from to get seven?
We derive the natural numbers, by neglecting everything of a system except distinctness and order [Dedekind]
     Full Idea: If in an infinite system, set in order, we neglect the special character of the elements, simply retaining their distinguishability and their order-relations to one another, then the elements are the natural numbers, created by the human mind.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], VI.73)
     A reaction: [compressed] This is the classic abstractionist view of the origin of number, but with the added feature that the order is first imposed, so that ordinals remain after the abstraction. This, of course, sounds a bit circular, as well as subjective.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
I prefer the open sentences of a Constructibility Theory, to Platonist ideas of 'equivalence classes' [Chihara]
     Full Idea: What I refer to as an 'equivalence class' (of line segments of a particular length) is an open sentence in my Constructibility Theory. I just use this terminology of the Platonist for didactic purposes.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 09.10)
     A reaction: This is because 'equivalence classes' is committed to the existence of classes, which is Quinean Platonism. I am with Chihara in wanting a story that avoids such things. Kit Fine is investigating similar notions of rules of construction.
18. Thought / E. Abstraction / 8. Abstractionism Critique
Dedekind has a conception of abstraction which is not psychologistic [Dedekind, by Tait]
     Full Idea: Dedekind's conception is psychologistic only if that is the only way to understand the abstraction that is involved, which it is not.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by William W. Tait - Frege versus Cantor and Dedekind IV
     A reaction: This is a very important suggestion, implying that we can retain some notion of abstractionism, while jettisoning the hated subjective character of private psychologism, which seems to undermine truth and logic.
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
Mathematical entities are causally inert, so the causal theory of reference won't work for them [Chihara]
     Full Idea: Causal theories of reference seem doomed to failure for the case of reference to mathematical entities, since such entities are evidently causally inert.
     From: Charles Chihara (A Structural Account of Mathematics [2004], 01.3)
     A reaction: Presumably you could baptise a fictional entity such as 'Polonius', and initiate a social causal chain, with a tradition of reference. You could baptise a baby in absentia.
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
'Gunk' is an individual possessing no parts that are atoms [Chihara]
     Full Idea: An 'atomless gunk' is defined to be an individual possessing no parts that are atoms.
     From: Charles Chihara (A Structural Account of Mathematics [2004], App A)
     A reaction: [Lewis coined it] If you ask what are a-toms made of and what are ideas made of, the only answer we can offer is that the a-toms are made of gunk, and the ideas aren't made of anything, which is still bad news for the existence of ideas.