Combining Philosophers

All the ideas for Lynch,MP/Glasgow,JM, Charles Parsons and Jean Buridan

unexpand these ideas     |    start again     |     specify just one area for these philosophers


18 ideas

2. Reason / A. Nature of Reason / 9. Limits of Reason
A rational donkey would starve to death between two totally identical piles of hay [Buridan, by PG]
     Full Idea: A rational donkey faced with two totally identical piles of hay would be unable to decide which one to eat first, and would therefore starve to death
     From: report of Jean Buridan (talk [1338]) by PG - Db (ideas)
     A reaction: also De Caelo 295b32 (Idea 19740).
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modal logic is not an extensional language [Parsons,C]
     Full Idea: Modal logic is not an extensional language.
     From: Charles Parsons (A Plea for Substitutional Quantification [1971], p.159 n8)
     A reaction: [I record this for investigation. Possible worlds seem to contain objects]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The old problems with the axiom of choice are probably better ascribed to the law of excluded middle [Parsons,C]
     Full Idea: The difficulties historically attributed to the axiom of choice are probably better ascribed to the law of excluded middle.
     From: Charles Parsons (Review of Tait 'Provenance of Pure Reason' [2009], §2)
     A reaction: The law of excluded middle was a target for the intuitionists, so presumably the debate went off in that direction.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional existential quantifier may explain the existence of linguistic entities [Parsons,C]
     Full Idea: I argue (against Quine) that the existential quantifier substitutionally interpreted has a genuine claim to express a concept of existence, which may give the best account of linguistic abstract entities such as propositions, attributes, and classes.
     From: Charles Parsons (A Plea for Substitutional Quantification [1971], p.156)
     A reaction: Intuitively I have my doubts about this, since the whole thing sounds like a verbal and conventional game, rather than anything with a proper ontology. Ruth Marcus and Quine disagree over this one.
On the substitutional interpretation, '(∃x) Fx' is true iff a closed term 't' makes Ft true [Parsons,C]
     Full Idea: For the substitutional interpretation of quantifiers, a sentence of the form '(∃x) Fx' is true iff there is some closed term 't' of the language such that 'Ft' is true. For the objectual interpretation some object x must exist such that Fx is true.
     From: Charles Parsons (A Plea for Substitutional Quantification [1971], p.156)
     A reaction: How could you decide if it was true for 't' if you didn't know what object 't' referred to?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Parsons says counting is tagging as first, second, third..., and converting the last to a cardinal [Parsons,C, by Heck]
     Full Idea: In Parsons's demonstrative model of counting, '1' means the first, and counting says 'the first, the second, the third', where one is supposed to 'tag' each object exactly once, and report how many by converting the last ordinal into a cardinal.
     From: report of Charles Parsons (Frege's Theory of Numbers [1965]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 3
     A reaction: This sounds good. Counting seems to rely on that fact that numbers can be both ordinals and cardinals. You don't 'convert' at the end, though, because all the way you mean 'this cardinality in this order'.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
General principles can be obvious in mathematics, but bold speculations in empirical science [Parsons,C]
     Full Idea: The existence of very general principles in mathematics are universally regarded as obvious, where on an empiricist view one would expect them to be bold hypotheses, about which a prudent scientist would maintain reserve.
     From: Charles Parsons (Mathematical Intuition [1980], p.152), quoted by Penelope Maddy - Naturalism in Mathematics
     A reaction: This is mainly aimed at Quine's and Putnam's indispensability (to science) argument about mathematics.
6. Mathematics / C. Sources of Mathematics / 8. Finitism
If functions are transfinite objects, finitists can have no conception of them [Parsons,C]
     Full Idea: The finitist may have no conception of function, because functions are transfinite objects.
     From: Charles Parsons (Review of Tait 'Provenance of Pure Reason' [2009], §4)
     A reaction: He is offering a view of Tait's. Above my pay scale, but it sounds like a powerful objection to the finitist view. Maybe there is a finitist account of functions that could be given?
7. Existence / C. Structure of Existence / 3. Levels of Reality
A necessary relation between fact-levels seems to be a further irreducible fact [Lynch/Glasgow]
     Full Idea: It seems unavoidable that the facts about logically necessary relations between levels of facts are themselves logically distinct further facts, irreducible to the microphysical facts.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], C)
     A reaction: I'm beginning to think that rejecting every theory of reality that is proposed by carefully exposing some infinite regress hidden in it is a rather lazy way to do philosophy. Almost as bad as rejecting anything if it can't be defined.
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
If some facts 'logically supervene' on some others, they just redescribe them, adding nothing [Lynch/Glasgow]
     Full Idea: Logical supervenience, restricted to individuals, seems to imply strong reduction. It is said that where the B-facts logically supervene on the A-facts, the B-facts simply re-describe what the A-facts describe, and the B-facts come along 'for free'.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], C)
     A reaction: This seems to be taking 'logically' to mean 'analytically'. Presumably an entailment is logically supervenient on its premisses, and may therefore be very revealing, even if some people think such things are analytic.
7. Existence / D. Theories of Reality / 6. Physicalism
Nonreductive materialism says upper 'levels' depend on lower, but don't 'reduce' [Lynch/Glasgow]
     Full Idea: The root intuition behind nonreductive materialism is that reality is composed of ontologically distinct layers or levels. …The upper levels depend on the physical without reducing to it.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], B)
     A reaction: A nice clear statement of a view which I take to be false. This relationship is the sort of thing that drives people fishing for an account of it to use the word 'supervenience', which just says two things seem to hang out together. Fluffy materialism.
The hallmark of physicalism is that each causal power has a base causal power under it [Lynch/Glasgow]
     Full Idea: Jessica Wilson (1999) says what makes physicalist accounts different from emergentism etc. is that each individual causal power associated with a supervenient property is numerically identical with a causal power associated with its base property.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], n 11)
     A reaction: Hence the key thought in so-called (serious, rather than self-evident) 'emergentism' is so-called 'downward causation', which I take to be an idle daydream.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
If a mathematical structure is rejected from a physical theory, it retains its mathematical status [Parsons,C]
     Full Idea: If experience shows that some aspect of the physical world fails to instantiate a certain mathematical structure, one will modify the theory by sustituting a different structure, while the original structure doesn't lose its status as part of mathematics.
     From: Charles Parsons (Review of Tait 'Provenance of Pure Reason' [2009], §2)
     A reaction: This seems to be a beautifully simple and powerful objection to the Quinean idea that mathematics somehow only gets its authority from physics. It looked like a daft view to begin with, of course.
9. Objects / C. Structure of Objects / 4. Quantity of an Object
Without magnitude a thing would retain its parts, but they would have no location [Buridan]
     Full Idea: If magnitude were removed from matter by divine power, it would still have parts distinct from one another, but they would not be positioned either outside one another or inside one another, because position would be removed.
     From: Jean Buridan (Questions on Aristotle's Physics [1346], I.8 f. 11va), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 14.4
     A reaction: This shows why Quantity is such an important category for scholastic philosopher.
9. Objects / E. Objects over Time / 8. Continuity of Rivers
A thing is (less properly) the same over time if each part is succeeded by another [Buridan]
     Full Idea: Less properly, one thing is said to be numerically the same as another according to the continuity of distinct parts, one in succession after another. In this way the Seine is said to be the same river after a thousand years.
     From: Jean Buridan (Questions on Aristotle's Physics [1346], I.10, f. 13vb), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 29.3
     A reaction: This is a rather good solution to the difficulty of the looser non-transitive notion of a thing being 'the same'. The Ship of Theseus endures (in the simple case) as long as you remember to replace each departing plank. Must some parts be originals?
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / b. Primary/secondary
Why can't we deduce secondary qualities from primary ones, if they cause them? [Buridan]
     Full Idea: The entire difficulty in this question is why through a knowledge of the primary tangible qualities we cannot come to a knowledge of flavors or odors, since these are their causes, since we often go from knowledge of causes to knowing their effects.
     From: Jean Buridan (Questions on Aristotle's Posterior Analytics [1344], I.28c), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 22.2
     A reaction: He is commenting on Idea 16725. Still a nice puzzle in the philosophy of mind. Will neuroscientists ever be able to infer to actual character of some quale, just from the structures of the neurons?
14. Science / A. Basis of Science / 2. Demonstration
Induction is not demonstration, because not all of the instances can be observed [Buridan]
     Full Idea: Inductions are not demonstrations, because they do not conclude on account of their form, since it is not possible to make an induction from all cases.
     From: Jean Buridan (Questions on Aristotle's Physics [1346], I.15 f. 18vb), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 02.3
     A reaction: Thus showing that demonstration really is meant to be as conclusive as a mathematical proof, and that Aristotle seems to think such a thing is possible in physical science.
14. Science / C. Induction / 2. Aims of Induction
Science is based on induction, for general truths about fire, rhubarb and magnets [Buridan]
     Full Idea: Induction should be regarded as a principle of natural science. For otherwise you could not prove that every fire is hot, that all rhubarb is purgative of bile, that every magnet attracts iron.
     From: Jean Buridan (Questions on Aristotle's Physics [1346], I.15 f. 18vb), quoted by Robert Pasnau - Metaphysical Themes 1274-1671 02.3
     A reaction: He is basing this on Aristotle, and refers to 'Physics' 190a33-b11.