Combining Philosophers

All the ideas for Lynch,MP/Glasgow,JM, David Hilbert and John Hawthorne

unexpand these ideas     |    start again     |     specify just one area for these philosophers


50 ideas

3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
If axioms and their implications have no contradictions, they pass my criterion of truth and existence [Hilbert]
     Full Idea: If the arbitrarily given axioms do not contradict each other with all their consequences, then they are true and the things defined by the axioms exist. For me this is the criterion of truth and existence.
     From: David Hilbert (Letter to Frege 29.12.1899 [1899]), quoted by R Kaplan / E Kaplan - The Art of the Infinite 2 'Mind'
     A reaction: If an axiom says something equivalent to 'fairies exist, but they are totally undetectable', this would seem to avoid contradiction with anything, and hence be true. Hilbert's idea sounds crazy to me. He developed full Formalism later.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
You would cripple mathematics if you denied Excluded Middle [Hilbert]
     Full Idea: Taking the principle of Excluded Middle away from the mathematician would be the same, say, as prohibiting the astronomer from using the telescope or the boxer from using his fists.
     From: David Hilbert (The Foundations of Mathematics [1927], p.476), quoted by Ian Rumfitt - The Boundary Stones of Thought 9.4
     A reaction: [p.476 in Van Heijenoort]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The facts of geometry, arithmetic or statics order themselves into theories [Hilbert]
     Full Idea: The facts of geometry order themselves into a geometry, the facts of arithmetic into a theory of numbers, the facts of statics, electrodynamics into a theory of statics, electrodynamics, or the facts of the physics of gases into a theory of gases.
     From: David Hilbert (Axiomatic Thought [1918], [03])
     A reaction: This is the confident (I would say 'essentialist') view of axioms, which received a bit of a setback with Gödel's Theorems. I certainly agree that the world proposes an order to us - we don't just randomly invent one that suits us.
Axioms must reveal their dependence (or not), and must be consistent [Hilbert]
     Full Idea: If a theory is to serve its purpose of orienting and ordering, it must first give us an overview of the independence and dependence of its propositions, and second give a guarantee of the consistency of all of the propositions.
     From: David Hilbert (Axiomatic Thought [1918], [09])
     A reaction: Gödel's Second theorem showed that the theory can never prove its own consistency, which made the second Hilbert requirement more difficult. It is generally assumed that each of the axioms must be independent of the others.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Hilbert wanted to prove the consistency of all of mathematics (which realists take for granted) [Hilbert, by Friend]
     Full Idea: Hilbert wanted to derive ideal mathematics from the secure, paradox-free, finite mathematics (known as 'Hilbert's Programme'). ...Note that for the realist consistency is not something we need to prove; it is a precondition of thought.
     From: report of David Hilbert (works [1900], 6.7) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: I am an intuitive realist, though I am not so sure about that on cautious reflection. Compare the claims that there are reasons or causes for everything. Reality cannot contain contradicitions (can it?). Contradictions would be our fault.
I aim to establish certainty for mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is the clearest statement of the famous Hilbert Programme, which is said to have been brought to an abrupt end by Gödel's Incompleteness Theorems.
We believe all mathematical problems are solvable [Hilbert]
     Full Idea: The thesis that every mathematical problem is solvable - we are all convinced that it really is so.
     From: David Hilbert (On the Infinite [1925], p.200)
     A reaction: This will include, for example, Goldbach's Conjecture (every even is the sum of two primes), which is utterly simple but with no proof anywhere in sight.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Hilbert aimed to eliminate number from geometry [Hilbert, by Hart,WD]
     Full Idea: One of Hilbert's aims in 'The Foundations of Geometry' was to eliminate number [as measure of lengths and angles] from geometry.
     From: report of David Hilbert (Foundations of Geometry [1899]) by William D. Hart - The Evolution of Logic 2
     A reaction: Presumably this would particularly have to include the elimination of ratios (rather than actual specific lengths).
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
No one shall drive us out of the paradise the Cantor has created for us [Hilbert]
     Full Idea: No one shall drive us out of the paradise the Cantor has created for us.
     From: David Hilbert (On the Infinite [1925], p.191), quoted by James Robert Brown - Philosophy of Mathematics
     A reaction: This is Hilbert's famous refusal to accept any account of mathematics, such as Kant's, which excludes actual infinities. Cantor had laid out a whole glorious hierarchy of different infinities.
We extend finite statements with ideal ones, in order to preserve our logic [Hilbert]
     Full Idea: To preserve the simple formal rules of ordinary Aristotelian logic, we must supplement the finitary statements with ideal statements.
     From: David Hilbert (On the Infinite [1925], p.195)
     A reaction: I find very appealing the picture of mathematics as rooted in the physical world, and then gradually extended by a series of 'idealisations', which should perhaps be thought of as fictions.
Only the finite can bring certainty to the infinite [Hilbert]
     Full Idea: Operating with the infinite can be made certain only by the finitary.
     From: David Hilbert (On the Infinite [1925], p.201)
     A reaction: See 'Compactness' for one aspect of this claim. I think Hilbert was fighting a rearguard action, and his idea now has few followers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The idea of an infinite totality is an illusion [Hilbert]
     Full Idea: Just as in the limit processes of the infinitesimal calculus, the infinitely large and small proved to be a mere figure of speech, so too we must realise that the infinite in the sense of an infinite totality, used in deductive methods, is an illusion.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is a very authoritative rearguard action. I no longer think the dispute matters much, it being just a dispute over a proposed new meaning for the word 'number'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
There is no continuum in reality to realise the infinitely small [Hilbert]
     Full Idea: A homogeneous continuum which admits of the sort of divisibility needed to realise the infinitely small is nowhere to be found in reality.
     From: David Hilbert (On the Infinite [1925], p.186)
     A reaction: He makes this remark as a response to Planck's new quantum theory (the year before the big works of Heisenberg and Schrödinger). Personally I don't see why infinities should depend on the physical world, since they are imaginary.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
To decide some questions, we must study the essence of mathematical proof itself [Hilbert]
     Full Idea: It is necessary to study the essence of mathematical proof itself if one wishes to answer such questions as the one about decidability in a finite number of operations.
     From: David Hilbert (Axiomatic Thought [1918], [53])
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid axioms concerns possibilities of construction, but Hilbert's assert the existence of objects [Hilbert, by Chihara]
     Full Idea: Hilbert's geometrical axioms were existential in character, asserting the existence of certain geometrical objects (points and lines). Euclid's postulates do not assert the existence of anything; they assert the possibility of certain constructions.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Charles Chihara - A Structural Account of Mathematics 01.1
     A reaction: Chihara says geometry was originally understood modally, but came to be understood existentially. It seems extraordinary to me that philosophers of mathematics can have become more platonist over the centuries.
Hilbert's formalisation revealed implicit congruence axioms in Euclid [Hilbert, by Horsten/Pettigrew]
     Full Idea: In his formal investigation of Euclidean geometry, Hilbert uncovered congruence axioms that implicitly played a role in Euclid's proofs but were not explicitly recognised.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Horsten,L/Pettigrew,R - Mathematical Methods in Philosophy 2
     A reaction: The writers are offering this as a good example of the benefits of a precise and formal approach to foundational questions. It's hard to disagree, but dispiriting if you need a PhD in maths before you can start doing philosophy.
Hilbert's geometry is interesting because it captures Euclid without using real numbers [Hilbert, by Field,H]
     Full Idea: Hilbert's formulation of the Euclidean theory is of special interest because (besides being rigorously axiomatised) it does not employ the real numbers in the axioms.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Hartry Field - Science without Numbers 3
     A reaction: Notice that this job was done by Hilbert, and not by the fictionalist Hartry Field.
The whole of Euclidean geometry derives from a basic equation and transformations [Hilbert]
     Full Idea: The linearity of the equation of the plane and of the orthogonal transformation of point-coordinates is completely adequate to produce the whole broad science of spatial Euclidean geometry purely by means of analysis.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This remark comes from the man who succeeded in producing modern axioms for geometry (in 1897), so he knows what he is talking about. We should not be wholly pessimistic about Hilbert's ambitious projects. He had to dig deeper than this idea...
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Number theory just needs calculation laws and rules for integers [Hilbert]
     Full Idea: The laws of calculation and the rules of integers suffice for the construction of number theory.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This is the confident Hilbert view that the whole system can be fully spelled out. Gödel made this optimism more difficult.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The existence of an arbitrarily large number refutes the idea that numbers come from experience [Hilbert]
     Full Idea: The standpoint of pure experience seems to me to be refuted by the objection that the existence, possible or actual, of an arbitrarily large number can never be derived through experience, that is, through experiment.
     From: David Hilbert (On the Foundations of Logic and Arithmetic [1904], p.130)
     A reaction: Alternatively, empiricism refutes infinite numbers! No modern mathematician will accept that, but you wonder in what sense the proposed entities qualify as 'numbers'.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logic already contains some arithmetic, so the two must be developed together [Hilbert]
     Full Idea: In the traditional exposition of the laws of logic certain fundamental arithmetic notions are already used, for example in the notion of set, and to some extent also of number. Thus we turn in a circle, and a partly simultaneous development is required.
     From: David Hilbert (On the Foundations of Logic and Arithmetic [1904], p.131)
     A reaction: If the Axiom of Infinity is meant, it may be possible to purge the arithmetic from the logic. Then the challenge to derive arithmetic from it becomes rather tougher.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
The grounding of mathematics is 'in the beginning was the sign' [Hilbert]
     Full Idea: The solid philosophical attitude that I think is required for the grounding of pure mathematics is this: In the beginning was the sign.
     From: David Hilbert (works [1900]), quoted by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Why did people invent those particular signs? Presumably they were meant to designate something, in the world or in our experience.
Hilbert substituted a syntactic for a semantic account of consistency [Hilbert, by George/Velleman]
     Full Idea: Hilbert replaced a semantic construal of inconsistency (that the theory entails a statement that is necessarily false) by a syntactic one (that the theory formally derives the statement (0 =1 ∧ 0 not-= 1).
     From: report of David Hilbert (works [1900]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Finding one particular clash will pinpoint the notion of inconsistency, but it doesn't seem to define what it means, since the concept has very wide application.
Hilbert said (to block paradoxes) that mathematical existence is entailed by consistency [Hilbert, by Potter]
     Full Idea: Hilbert proposed to circuvent the paradoxes by means of the doctrine (already proposed by Poincaré) that in mathematics consistency entails existence.
     From: report of David Hilbert (On the Concept of Number [1900], p.183) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 19 'Exist'
     A reaction: Interesting. Hilbert's idea has struck me as weird, but it makes sense if its main motive is to block the paradoxes. Roughly, the idea is 'it exists if it isn't paradoxical'. A low bar for existence (but then it is only in mathematics!).
The subject matter of mathematics is immediate and clear concrete symbols [Hilbert]
     Full Idea: The subject matter of mathematics is the concrete symbols themselves whose structure is immediately clear and recognisable.
     From: David Hilbert (On the Infinite [1925], p.192)
     A reaction: I don't think many people will agree with Hilbert here. Does he mean token-symbols or type-symbols? You can do maths in your head, or with different symbols. If type-symbols, you have to explain what a type is.
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Hilbert aimed to prove the consistency of mathematics finitely, to show infinities won't produce contradictions [Hilbert, by George/Velleman]
     Full Idea: Hilbert's project was to establish the consistency of classical mathematics using just finitary means, to convince all parties that no contradictions will follow from employing the infinitary notions and reasoning.
     From: report of David Hilbert (works [1900]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This is the project which was badly torpedoed by Gödel's Second Incompleteness Theorem.
Mathematics divides in two: meaningful finitary statements, and empty idealised statements [Hilbert]
     Full Idea: We can conceive mathematics to be a stock of two kinds of formulas: first, those to which the meaningful communications of finitary statements correspond; and secondly, other formulas which signify nothing and which are ideal structures of our theory.
     From: David Hilbert (On the Infinite [1925], p.196), quoted by David Bostock - Philosophy of Mathematics 6.1
7. Existence / C. Structure of Existence / 3. Levels of Reality
A necessary relation between fact-levels seems to be a further irreducible fact [Lynch/Glasgow]
     Full Idea: It seems unavoidable that the facts about logically necessary relations between levels of facts are themselves logically distinct further facts, irreducible to the microphysical facts.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], C)
     A reaction: I'm beginning to think that rejecting every theory of reality that is proposed by carefully exposing some infinite regress hidden in it is a rather lazy way to do philosophy. Almost as bad as rejecting anything if it can't be defined.
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
If some facts 'logically supervene' on some others, they just redescribe them, adding nothing [Lynch/Glasgow]
     Full Idea: Logical supervenience, restricted to individuals, seems to imply strong reduction. It is said that where the B-facts logically supervene on the A-facts, the B-facts simply re-describe what the A-facts describe, and the B-facts come along 'for free'.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], C)
     A reaction: This seems to be taking 'logically' to mean 'analytically'. Presumably an entailment is logically supervenient on its premisses, and may therefore be very revealing, even if some people think such things are analytic.
7. Existence / D. Theories of Reality / 6. Physicalism
Nonreductive materialism says upper 'levels' depend on lower, but don't 'reduce' [Lynch/Glasgow]
     Full Idea: The root intuition behind nonreductive materialism is that reality is composed of ontologically distinct layers or levels. …The upper levels depend on the physical without reducing to it.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], B)
     A reaction: A nice clear statement of a view which I take to be false. This relationship is the sort of thing that drives people fishing for an account of it to use the word 'supervenience', which just says two things seem to hang out together. Fluffy materialism.
The hallmark of physicalism is that each causal power has a base causal power under it [Lynch/Glasgow]
     Full Idea: Jessica Wilson (1999) says what makes physicalist accounts different from emergentism etc. is that each individual causal power associated with a supervenient property is numerically identical with a causal power associated with its base property.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], n 11)
     A reaction: Hence the key thought in so-called (serious, rather than self-evident) 'emergentism' is so-called 'downward causation', which I take to be an idle daydream.
8. Modes of Existence / C. Powers and Dispositions / 2. Powers as Basic
A categorical basis could hardly explain a disposition if it had no powers of its own [Hawthorne]
     Full Idea: The categorical basis would be a poor explanans for the disposition as explanandum, if the categorical basis did not drag any causal powers along with it.
     From: John Hawthorne (Causal Structuralism [2001], 2.4)
     A reaction: The idea that the world is explained just by some basic stuff having qualities and relations always strikes me as wrong, because the view of nature is too passive.
8. Modes of Existence / C. Powers and Dispositions / 5. Powers and Properties
Is the causal profile of a property its essence? [Hawthorne]
     Full Idea: We might say that the causal profile of a property is its essence.
     From: John Hawthorne (Causal Structuralism [2001], Intro)
     A reaction: I associate this view with Shoemaker, and find it sympathetic. We always want to know more. What gives rise to these causal powers? Where does explanation end? He notes that you might say some of the powers are non-essential.
Could two different properties have the same causal profile? [Hawthorne]
     Full Idea: If there is more to the nature of a property than the causal powers that it confers, then two different internal natures of properties might necessitate the same causal profile.
     From: John Hawthorne (Causal Structuralism [2001], Intro)
     A reaction: If the causal profiles were identical, it is hard to see how we could even propose, let alone test, their intrinsic difference. ...Unless, perhaps, we knew that the properties arose from different substrata.
If properties are more than their powers, we could have two properties with the same power [Hawthorne]
     Full Idea: If a property is something over and above its causal profile, we seem to have conceptual space for an electron to have negative charge 1 and negative charge 2, that have exactly the same causal powers.
     From: John Hawthorne (Causal Structuralism [2001], 1.3)
9. Objects / B. Unity of Objects / 3. Unity Problems / a. Scattered objects
If we accept scattered objects such as archipelagos, why not think of cars that way? [Hawthorne]
     Full Idea: In being willing to countenance archipelagos, one embraces scattered objects. Why not then embrace the 'archipelago' of my car and the Eiffel Tower?
     From: John Hawthorne (Three-Dimensionalism v Four-Dimensionalism [2008], 2.1)
     A reaction: This is a beautifully simple and striking point. Language is full of embracing terms like 'the furniture', but that doesn't mean we assume the furniture is unified. The archipelago is less of an 'object' if you live on one of the islands.
9. Objects / C. Structure of Objects / 2. Hylomorphism / b. Form as principle
We can treat the structure/form of the world differently from the nodes/matter of the world [Hawthorne]
     Full Idea: It does not seem altogether arbitrary to treat the structure of the world (the 'form' of the world) in a different way to the nodes in the structure (the 'matter' of the world).
     From: John Hawthorne (Causal Structuralism [2001], 2.5)
     A reaction: An interesting contemporary spin put on Aristotle's original view. Hawthorne is presenting the Aristotle account as a sort of 'structuralism' about nature.
9. Objects / D. Essence of Objects / 3. Individual Essences
An individual essence is a necessary and sufficient profile for a thing [Hawthorne]
     Full Idea: An individual essence is a profile that is necessary and sufficient for some particular thing.
     From: John Hawthorne (Causal Structuralism [2001], Intro)
     A reaction: By 'for' he presumably means for the thing to have an existence and a distinct identity. If it retained its identity, but didn't function any more, would that be loss of essence?
9. Objects / E. Objects over Time / 4. Four-Dimensionalism
Four-dimensionalists say instantaneous objects are more fundamental than long-lived ones [Hawthorne]
     Full Idea: Self-proclaimed four-dimensionalists typically adopt a picture that reckons instantaneous objects (and facts about them) to be more fundamental than long-lived ones.
     From: John Hawthorne (Three-Dimensionalism v Four-Dimensionalism [2008], 2.2)
     A reaction: A nice elucidation. As in Idea 14588, this seems motivated by a desire for some sort of foundationalism or atomism. Why shouldn't a metaphysic treat the middle-sized or temporally extended as foundational, and derive the rest that way?
9. Objects / F. Identity among Objects / 1. Concept of Identity
Our notion of identical sets involves identical members, which needs absolute identity [Hawthorne]
     Full Idea: Our conceptual grip on the notion of a set is founded on the axiom of extensionality: a set x is the same as a set y iff x and y have the same members. But this axiom deploys the notion of absolute identity ('same members').
     From: John Hawthorne (Identity [2003], 3.1)
     A reaction: Identity seems to be a primitive, useful and crucial concept, so don't ask what it is. I suspect that numbers can't get off the ground without it (especially, in view of the above, if you define numbers in terms of sets).
10. Modality / A. Necessity / 11. Denial of Necessity
A modal can reverse meaning if the context is seen differently, so maybe context is all? [Hawthorne]
     Full Idea: One person says 'He can't dig a hole; he hasn't got a spade', and another says 'He can dig a hole; just give him a spade', and both uses of the modal 'can' will be true. So some philosophers say that all modal predications are thus context-dependent.
     From: John Hawthorne (Three-Dimensionalism v Four-Dimensionalism [2008], 1.2)
     A reaction: Quine is the guru for this view of modality. Hawthorne's example seems to me to rely too much on the linguistic feature of contrasting 'can' and 'can't'. The underlying assertion in the propositions says something real about the possibilities.
11. Knowledge Aims / B. Certain Knowledge / 1. Certainty
My theory aims at the certitude of mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184), quoted by James Robert Brown - Philosophy of Mathematics Ch.5
     A reaction: This dream is famous for being shattered by Gödel's Incompleteness Theorem a mere six years later. Neverless there seem to be more limited certainties which are accepted in mathematics. The certainty of the whole of arithmetic is beyond us.
11. Knowledge Aims / B. Certain Knowledge / 2. Common Sense Certainty
Commitment to 'I have a hand' only makes sense in a context where it has been doubted [Hawthorne]
     Full Idea: If I utter 'I know I have a hand' then I can only be reckoned a cooperative conversant by my interlocutors on the assumption that there was a real question as to whether I have a hand.
     From: John Hawthorne (The Case for Closure [2005], 2)
     A reaction: This seems to point to the contextualist approach to global scepticism, which concerns whether we are setting the bar high or low for 'knowledge'.
13. Knowledge Criteria / A. Justification Problems / 2. Justification Challenges / c. Knowledge closure
How can we know the heavyweight implications of normal knowledge? Must we distort 'knowledge'? [Hawthorne]
     Full Idea: Those who deny skepticism but accept closure will have to explain how we know the various 'heavyweight' skeptical hypotheses to be false. Do we then twist the concept of knowledge to fit the twin desiderata of closue and anti-skepticism?
     From: John Hawthorne (The Case for Closure [2005], Intro)
     A reaction: [He is giving Dretske's view; Dretske says we do twist knowledge] Thus if I remember yesterday, that has the heavyweight implication that the past is real. Hawthorne nicely summarises why closure produces a philosophical problem.
We wouldn't know the logical implications of our knowledge if small risks added up to big risks [Hawthorne]
     Full Idea: Maybe one cannot know the logical consequences of the proposition that one knows, on account of the fact that small risks add up to big risks.
     From: John Hawthorne (The Case for Closure [2005], 1)
     A reaction: The idea of closure is that the new knowledge has the certainty of logic, and each step is accepted. An array of receding propositions can lose reliability, but that shouldn't apply to logic implications. Assuming monotonic logic, of course.
Denying closure is denying we know P when we know P and Q, which is absurd in simple cases [Hawthorne]
     Full Idea: How could we know that P and Q but not be in a position to know that P (as deniers of closure must say)? If my glass is full of wine, we know 'g is full of wine, and not full of non-wine'. How can we deny that we know it is not full of non-wine?
     From: John Hawthorne (The Case for Closure [2005], 2)
     A reaction: Hawthorne merely raises this doubt. Dretske is concerned with heavyweight implications, but how do you accept lightweight implications like this one, and then suddenly reject them when they become too heavy? [see p.49]
26. Natural Theory / C. Causation / 7. Eliminating causation
Maybe scientific causation is just generalisation about the patterns [Hawthorne]
     Full Idea: Perhaps science doesn't need a robust conception of causation, and can get by with thinking of causal laws in a Humean way, as the simplest generalization over the mosaic.
     From: John Hawthorne (Causal Structuralism [2001], 1.5)
     A reaction: The Humean view he is referring to is held by David Lewis. That seems a council of defeat. We observe from a distance, but make no attempt to explain.
26. Natural Theory / D. Laws of Nature / 6. Laws as Numerical
We only know the mathematical laws, but not much else [Hawthorne]
     Full Idea: We know the laws of the physical world, in so far as they are mathematical, pretty well, but we know nothing else about it.
     From: John Hawthorne (Causal Structuralism [2001], Ch.25)
     A reaction: Lovely remark [spotted by Hawthorne]. This sums up exactly what I take to be the most pressing issue in philosophy of science - that we develop a view of science that has space for the next step in explanation.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
By digging deeper into the axioms we approach the essence of sciences, and unity of knowedge [Hilbert]
     Full Idea: By pushing ahead to ever deeper layers of axioms ...we also win ever-deeper insights into the essence of scientific thought itself, and become ever more conscious of the unity of our knowledge.
     From: David Hilbert (Axiomatic Thought [1918], [56])
     A reaction: This is the less fashionable idea that scientific essentialism can also be applicable in the mathematic sciences, centring on the project of axiomatisation for logic, arithmetic, sets etc.
27. Natural Reality / C. Space / 6. Space-Time
Modern metaphysicians tend to think space-time points are more fundamental than space-time regions [Hawthorne]
     Full Idea: Nowadays it is common for metaphysicians to hold both that space-time regions are less fundamental than the space-time points that compose them, and that facts about the regions are less fundamental than facts about the points and their arrangements.
     From: John Hawthorne (Three-Dimensionalism v Four-Dimensionalism [2008], 1)
     A reaction: I'm not quite sure what a physicist would make of this. It seems to be motivated by some a priori preference for atomism, and for system-building from minimal foundations.