Combining Philosophers

All the ideas for Lynch,MP/Glasgow,JM, George Boolos and Philip Kitcher

unexpand these ideas     |    start again     |     specify just one area for these philosophers


71 ideas

4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionists rely on assertability instead of truth, but assertability relies on truth [Kitcher]
     Full Idea: Though it may appear that the intuitionist is providing an account of the connectives couched in terms of assertability conditions, the notion of assertability is a derivative one, ultimately cashed out by appealing to the concept of truth.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: I have quite a strong conviction that Kitcher is right. All attempts to eliminate truth, as some sort of ideal at the heart of ordinary talk and of reasoning, seems to me to be doomed.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
The logic of ZF is classical first-order predicate logic with identity [Boolos]
     Full Idea: The logic of ZF Set Theory is classical first-order predicate logic with identity.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.121)
     A reaction: This logic seems to be unable to deal with very large cardinals, precisely those that are implied by set theory, so there is some sort of major problem hovering here. Boolos is fairly neutral.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A few axioms of set theory 'force themselves on us', but most of them don't [Boolos]
     Full Idea: Maybe the axioms of extensionality and the pair set axiom 'force themselves on us' (Gödel's phrase), but I am not convinced about the axioms of infinity, union, power or replacement.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.130)
     A reaction: Boolos is perfectly happy with basic set theory, but rather dubious when very large cardinals come into the picture.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Do the Replacement Axioms exceed the iterative conception of sets? [Boolos, by Maddy]
     Full Idea: For Boolos, the Replacement Axioms go beyond the iterative conception.
     From: report of George Boolos (The iterative conception of Set [1971]) by Penelope Maddy - Naturalism in Mathematics I.3
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
The use of plurals doesn't commit us to sets; there do not exist individuals and collections [Boolos]
     Full Idea: We should abandon the idea that the use of plural forms commits us to the existence of sets/classes… Entities are not to be multiplied beyond necessity. There are not two sorts of things in the world, individuals and collections.
     From: George Boolos (To be is to be the value of a variable.. [1984]), quoted by Henry Laycock - Object
     A reaction: The problem of quantifying over sets is notoriously difficult. Try http://plato.stanford.edu/entries/object/index.html.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve sets are inconsistent: there is no set for things that do not belong to themselves [Boolos]
     Full Idea: The naïve view of set theory (that any zero or more things form a set) is natural, but inconsistent: the things that do not belong to themselves are some things that do not form a set.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.127)
     A reaction: As clear a summary of Russell's Paradox as you could ever hope for.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception says sets are formed at stages; some are 'earlier', and must be formed first [Boolos]
     Full Idea: According to the iterative conception, every set is formed at some stage. There is a relation among stages, 'earlier than', which is transitive. A set is formed at a stage if and only if its members are all formed before that stage.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.126)
     A reaction: He gives examples of the early stages, and says the conception is supposed to 'justify' Zermelo set theory. It is also supposed to make the axioms 'natural', rather than just being selected for convenience. And it is consistent.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is weak (Fs only collect is something the same size does) or strong (fewer Fs than objects) [Boolos, by Potter]
     Full Idea: Weak Limitation of Size: If there are no more Fs than Gs and the Gs form a collection, then Fs form a collection. Strong Limitation of Size: A property F fails to be collectivising iff there are as many Fs as there are objects.
     From: report of George Boolos (Iteration Again [1989]) by Michael Potter - Set Theory and Its Philosophy 13.5
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Does a bowl of Cheerios contain all its sets and subsets? [Boolos]
     Full Idea: Is there, in addition to the 200 Cheerios in a bowl, also a set of them all? And what about the vast number of subsets of Cheerios? It is haywire to think that when you have some Cheerios you are eating a set. What you are doing is: eating the Cheerios.
     From: George Boolos (To be is to be the value of a variable.. [1984], p.72)
     A reaction: In my case Boolos is preaching to the converted. I am particularly bewildered by someone (i.e. Quine) who believes that innumerable sets exist while 'having a taste for desert landscapes' in their ontology.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic is our preconditions for assessing empirical evidence [Kitcher]
     Full Idea: In my terminology, classical logic (or at least, its most central tenets) consists of propositional preconditions for our assessing empirical evidence in the way we do.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §VII)
     A reaction: I like an even stronger version of this - that classical logic arises out of our experiences of things, and so we are just assessing empirical evidence in terms of other (generalised) empirical evidence. Logic results from induction. Very unfashionable.
I believe classical logic because I was taught it and use it, but it could be undermined [Kitcher]
     Full Idea: I believe the laws of classical logic, in part because I was taught them, and in part because I think I see how those laws are used in assessing evidence. But my belief could easily be undermined by experience.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §VII)
     A reaction: Quine has one genuine follower! The trouble is his first sentence would fit witch-doctoring just as well. Kitcher went to Cambridge; I hope he doesn't just believe things because he was taught them, or because he 'sees how they are used'!
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Boolos reinterprets second-order logic as plural logic [Boolos, by Oliver/Smiley]
     Full Idea: Boolos's conception of plural logic is as a reinterpretation of second-order logic.
     From: report of George Boolos (On Second-Order Logic [1975]) by Oliver,A/Smiley,T - What are Sets and What are they For? n5
     A reaction: Oliver and Smiley don't accept this view, and champion plural reference differently (as, I think, some kind of metalinguistic device?).
Second-order logic metatheory is set-theoretic, and second-order validity has set-theoretic problems [Boolos]
     Full Idea: The metatheory of second-order logic is hopelessly set-theoretic, and the notion of second-order validity possesses many if not all of the epistemic debilities of the notion of set-theoretic truth.
     From: George Boolos (On Second-Order Logic [1975], p.45)
     A reaction: Epistemic problems arise when a logic is incomplete, because some of the so-called truths cannot be proved, and hence may be unreachable. This idea indicates Boolos's motivation for developing a theory of plural quantification.
Monadic second-order logic might be understood in terms of plural quantifiers [Boolos, by Shapiro]
     Full Idea: Boolos has proposed an alternative understanding of monadic, second-order logic, in terms of plural quantifiers, which many philosophers have found attractive.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by Stewart Shapiro - Philosophy of Mathematics 3.5
Boolos showed how plural quantifiers can interpret monadic second-order logic [Boolos, by Linnebo]
     Full Idea: In an indisputable technical result, Boolos showed how plural quantifiers can be used to interpret monadic second-order logic.
     From: report of George Boolos (To be is to be the value of a variable.. [1984], Intro) by Øystein Linnebo - Plural Quantification Exposed Intro
Any sentence of monadic second-order logic can be translated into plural first-order logic [Boolos, by Linnebo]
     Full Idea: Boolos discovered that any sentence of monadic second-order logic can be translated into plural first-order logic.
     From: report of George Boolos (To be is to be the value of a variable.. [1984], §1) by Øystein Linnebo - Plural Quantification Exposed p.74
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
A sentence can't be a truth of logic if it asserts the existence of certain sets [Boolos]
     Full Idea: One may be of the opinion that no sentence ought to be considered as a truth of logic if, no matter how it is interpreted, it asserts that there are sets of certain sorts.
     From: George Boolos (On Second-Order Logic [1975], p.44)
     A reaction: My intuition is that in no way should any proper logic assert the existence of anything at all. Presumably interpretations can assert the existence of numbers or sets, but we should be able to identify something which is 'pure' logic. Natural deduction?
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is clearly a logical concept, and greatly enhances predicate calculus [Boolos]
     Full Idea: Indispensable to cross-reference, lacking distinctive content, and pervading thought and discourse, 'identity' is without question a logical concept. Adding it to predicate calculus significantly increases the number and variety of inferences possible.
     From: George Boolos (To be is to be the value of a variable.. [1984], p.54)
     A reaction: It is not at all clear to me that identity is a logical concept. Is 'existence' a logical concept? It seems to fit all of Boolos's criteria? I say that all he really means is that it is basic to thought, but I'm not sure it drives the reasoning process.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
'∀x x=x' only means 'everything is identical to itself' if the range of 'everything' is fixed [Boolos]
     Full Idea: One may say that '∀x x=x' means 'everything is identical to itself', but one must realise that one's answer has a determinate sense only if the reference (range) of 'everything' is fixed.
     From: George Boolos (On Second-Order Logic [1975], p.46)
     A reaction: This is the problem now discussed in the recent book 'Absolute Generality', of whether one can quantify without specifying a fixed or limited domain.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order quantifiers are just like plural quantifiers in ordinary language, with no extra ontology [Boolos, by Shapiro]
     Full Idea: Boolos proposes that second-order quantifiers be regarded as 'plural quantifiers' are in ordinary language, and has developed a semantics along those lines. In this way they introduce no new ontology.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by Stewart Shapiro - Foundations without Foundationalism 7 n32
     A reaction: This presumably has to treat simple predicates and relations as simply groups of objects, rather than having platonic existence, or something.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
We should understand second-order existential quantifiers as plural quantifiers [Boolos, by Shapiro]
     Full Idea: Standard second-order existential quantifiers pick out a class or a property, but Boolos suggests that they be understood as a plural quantifier, like 'there are objects' or 'there are people'.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by Stewart Shapiro - Philosophy of Mathematics 7.4
     A reaction: This idea has potential application to mathematics, and Lewis (1991, 1993) 'invokes it to develop an eliminative structuralism' (Shapiro).
Plural forms have no more ontological commitment than to first-order objects [Boolos]
     Full Idea: Abandon the idea that use of plural forms must always be understood to commit one to the existence of sets of those things to which the corresponding singular forms apply.
     From: George Boolos (To be is to be the value of a variable.. [1984], p.66)
     A reaction: It seems to be an open question whether plural quantification is first- or second-order, but it looks as if it is a rewriting of the first-order.
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Boolos invented plural quantification [Boolos, by Benardete,JA]
     Full Idea: Boolos virtually patented the new device of plural quantification.
     From: report of George Boolos (To be is to be the value of a variable.. [1984]) by José A. Benardete - Logic and Ontology
     A reaction: This would be 'there are some things such that...'
5. Theory of Logic / K. Features of Logics / 4. Completeness
Weak completeness: if it is valid, it is provable. Strong: it is provable from a set of sentences [Boolos]
     Full Idea: A weak completeness theorem shows that a sentence is provable whenever it is valid; a strong theorem, that a sentence is provable from a set of sentences whenever it is a logical consequence of the set.
     From: George Boolos (On Second-Order Logic [1975], p.52)
     A reaction: So the weak version says |- φ → |= φ, and the strong versions says Γ |- φ → Γ |= φ. Presumably it is stronger if it can specify the source of the inference.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Why should compactness be definitive of logic? [Boolos, by Hacking]
     Full Idea: Boolos asks why on earth compactness, whatever its virtues, should be definitive of logic itself.
     From: report of George Boolos (On Second-Order Logic [1975]) by Ian Hacking - What is Logic? §13
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Kitcher says maths is an idealisation of the world, and our operations in dealing with it [Kitcher, by Resnik]
     Full Idea: Kitcher says maths is an 'idealising theory', like some in physics; maths idealises features of the world, and practical operations, such as segregating and matching (numbering), measuring, cutting, moving, assembling (geometry), and collecting (sets).
     From: report of Philip Kitcher (The Nature of Mathematical Knowledge [1984]) by Michael D. Resnik - Maths as a Science of Patterns One.4.2.2
     A reaction: This seems to be an interesting line, which is trying to be fairly empirical, and avoid basing mathematics on purely a priori understanding. Nevertheless, we do not learn idealisation from experience. Resnik labels Kitcher an anti-realist.
Mathematical a priorism is conceptualist, constructivist or realist [Kitcher]
     Full Idea: Proposals for a priori mathematical knowledge have three main types: conceptualist (true in virtue of concepts), constructivist (a construct of the human mind) and realist (in virtue of mathematical facts).
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 02.3)
     A reaction: Realism is pure platonism. I think I currently vote for conceptualism, with the concepts deriving from the concrete world, and then being extended by fictional additions, and shifts in the notion of what 'number' means.
The interest or beauty of mathematics is when it uses current knowledge to advance undestanding [Kitcher]
     Full Idea: What makes a question interesting or gives it aesthetic appeal is its focussing of the project of advancing mathematical understanding, in light of the concepts and systems of beliefs already achieved.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 09.3)
     A reaction: Kitcher defends explanation (the source of understanding, presumably) in terms of unification with previous theories (the 'concepts and systems'). I always have the impression that mathematicians speak of 'beauty' when they see economy of means.
The 'beauty' or 'interest' of mathematics is just explanatory power [Kitcher]
     Full Idea: Insofar as we can honor claims about the aesthetic qualities or the interest of mathematical inquiries, we should do so by pointing to their explanatory power.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 09.4)
     A reaction: I think this is a good enough account for me (but probably not for my friend Carl!). Beautiful cars are particularly streamlined. Beautiful people look particularly healthy. A beautiful idea is usually wide-ranging.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers stand to measurement as natural numbers stand to counting [Kitcher]
     Full Idea: The real numbers stand to measurement as the natural numbers stand to counting.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.4)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
Complex numbers were only accepted when a geometrical model for them was found [Kitcher]
     Full Idea: An important episode in the acceptance of complex numbers was the development by Wessel, Argand, and Gauss, of a geometrical model of the numbers.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: The model was in terms of vectors and rotation. New types of number are spurned until they can be shown to integrate into a range of mathematical practice, at which point mathematicians change the meaning of 'number' (without consulting us).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
A one-operation is the segregation of a single object [Kitcher]
     Full Idea: We perform a one-operation when we perform a segregative operation in which a single object is segregated.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.3)
     A reaction: This is part of Kitcher's empirical but constructive account of arithmetic, which I find very congenial. He avoids the word 'unit', and goes straight to the concept of 'one' (which he treats as more primitive than zero).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The old view is that mathematics is useful in the world because it describes the world [Kitcher]
     Full Idea: There is an old explanation of the utility of mathematics. Mathematics describes the structural features of our world, features which are manifested in the behaviour of all the world's inhabitants.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.1)
     A reaction: He only cites Russell in modern times as sympathising with this view, but Kitcher gives it some backing. I think the view is totally correct. The digression produced by Cantorian infinities has misled us.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Infinite natural numbers is as obvious as infinite sentences in English [Boolos]
     Full Idea: The existence of infinitely many natural numbers seems to me no more troubling than that of infinitely many computer programs or sentences of English. There is, for example, no longest sentence, since any number of 'very's can be inserted.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.129)
     A reaction: If you really resisted an infinity of natural numbers, presumably you would also resist an actual infinity of 'very's. The fact that it is unclear what could ever stop a process doesn't guarantee that the process is actually endless.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
Mathematics and science do not require very high orders of infinity [Boolos]
     Full Idea: To the best of my knowledge nothing in mathematics or science requires the existence of very high orders of infinity.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.122)
     A reaction: He is referring to particular high orders of infinity implied by set theory. Personally I want to wield Ockham's Razor. Is being implied by set theory a sufficient reason to accept such outrageous entities into our ontology?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
With infinitesimals, you divide by the time, then set the time to zero [Kitcher]
     Full Idea: The method of infinitesimals is that you divide by the time, and then set the time to zero.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 10.2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Many concepts can only be expressed by second-order logic [Boolos]
     Full Idea: The notions of infinity and countability can be characterized by second-order sentences, though not by first-order sentences (as compactness and Skolem-Löwenheim theorems show), .. as well as well-ordering, progression, ancestral and identity.
     From: George Boolos (On Second-Order Logic [1975], p.48)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematics isn't surprising, given that we experience many objects as abstract [Boolos]
     Full Idea: It is no surprise that we should be able to reason mathematically about many of the things we experience, for they are already 'abstract'.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.129)
     A reaction: He has just given a list of exemplary abstract objects (Idea 10489), but I think there is a more interesting idea here - that our experience of actual physical objects is to some extent abstract, as soon as it is conceptualised.
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Mathematical intuition is not the type platonism needs [Kitcher]
     Full Idea: The intuitions of which mathematicians speak are not those which Platonism requires.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.3)
     A reaction: The point is that it is not taken to be a 'special' ability, but rather a general insight arising from knowledge of mathematics. I take that to be a good account of intuition, which I define as 'inarticulate rationality'.
If mathematics comes through intuition, that is either inexplicable, or too subjective [Kitcher]
     Full Idea: If mathematical statements are don't merely report features of transient and private mental entities, it is unclear how pure intuition generates mathematical knowledge. But if they are, they express different propositions for different people and times.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.1)
     A reaction: This seems to be the key dilemma which makes Kitcher reject intuition as an a priori route to mathematics. We do, though, just seem to 'see' truths sometimes, and are unable to explain how we do it.
Intuition is no basis for securing a priori knowledge, because it is fallible [Kitcher]
     Full Idea: The process of pure intuition does not measure up to the standards required of a priori warrants not because it is sensuous but because it is fallible.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.2)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mathematical knowledge arises from basic perception [Kitcher]
     Full Idea: Mathematical knowledge arises from rudimentary knowledge acquired by perception.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: This is an empiricist manifesto, which asserts his allegiance to Mill, and he gives a sophisticated account of how higher mathematics can be accounted for in this way. Well, he tries to.
My constructivism is mathematics as an idealization of collecting and ordering objects [Kitcher]
     Full Idea: The constructivist position I defend claims that mathematics is an idealized science of operations which can be performed on objects in our environment. It offers an idealized description of operations of collecting and ordering.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: I think this is right. What is missing from Kitcher's account (and every other account I've met) is what is meant by 'idealization'. How do you go about idealising something? Hence my interest in the psychology of abstraction.
We derive limited mathematics from ordinary things, and erect powerful theories on their basis [Kitcher]
     Full Idea: I propose that a very limited amount of our mathematical knowledge can be obtained by observations and manipulations of ordinary things. Upon this small base we erect the powerful general theories of modern mathematics.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 05.2)
     A reaction: I agree. The three related processes that take us from the experiential base of mathematics to its lofty heights are generalisation, idealisation and abstraction.
The defenders of complex numbers had to show that they could be expressed in physical terms [Kitcher]
     Full Idea: Proponents of complex numbers had ultimately to argue that the new operations shared with the original paradigms a susceptibility to construal in physical terms. The geometrical models of complex numbers answered to this need.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: [A nice example of the verbose ideas which this website aims to express in plain English!] The interest is not that they had to be described physically (which may pander to an uninformed audience), but that they could be so described.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Analyticity avoids abstract entities, but can there be truth without reference? [Kitcher]
     Full Idea: Philosophers who hope to avoid commitment to abstract entities by claiming that mathematical statements are analytic must show how analyticity is, or provides a species of, truth not requiring reference.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.I)
     A reaction: [the last part is a quotation from W.D. Hart] Kitcher notes that Frege has a better account, because he provides objects to which reference can be made. I like this idea, which seems to raise a very large question, connected to truthmakers.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Arithmetic is an idealizing theory [Kitcher]
     Full Idea: I construe arithmetic as an idealizing theory.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: I find 'generalising' the most helpful word, because everyone seems to understand and accept the idea. 'Idealisation' invokes 'ideals', which lots of people dislike, and lots of philosophers seem to have trouble with 'abstraction'.
Arithmetic is made true by the world, but is also made true by our constructions [Kitcher]
     Full Idea: I want to suggest both that arithmetic owes its truth to the structure of the world and that arithmetic is true in virtue of our constructive activity.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: Well said, but the problem seems no more mysterious to me than the fact that trees grow in the woods and we build houses out of them. I think I will declare myself to be an 'empirical constructivist' about mathematics.
We develop a language for correlations, and use it to perform higher level operations [Kitcher]
     Full Idea: The development of a language for describing our correlational activity itself enables us to perform higher level operations.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: This is because all language itself (apart from proper names) is inherently general, idealised and abstracted. He sees the correlations as the nested collections expressed by set theory.
Constructivism is ontological (that it is the work of an agent) and epistemological (knowable a priori) [Kitcher]
     Full Idea: The constructivist ontological thesis is that mathematics owes its truth to the activity of an actual or ideal subject. The epistemological thesis is that we can have a priori knowledge of this activity, and so recognise its limits.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: The mention of an 'ideal' is Kitcher's personal view. Kitcher embraces the first view, and rejects the second.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualists say we know mathematics a priori by possessing mathematical concepts [Kitcher]
     Full Idea: Conceptualists claim that we have basic a priori knowledge of mathematical axioms in virtue of our possession of mathematical concepts.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.1)
     A reaction: I sympathise with this view. If concepts are reasonably clear, they will relate to one another in certain ways. How could they not? And how else would you work out those relations other than by thinking about them?
If meaning makes mathematics true, you still need to say what the meanings refer to [Kitcher]
     Full Idea: Someone who believes that basic truths of mathematics are true in virtue of meaning is not absolved from the task of saying what the referents of mathematical terms are, or ...what mathematical reality is like.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.6)
     A reaction: Nice question! He's a fan of getting at the explanatory in mathematics.
7. Existence / C. Structure of Existence / 3. Levels of Reality
A necessary relation between fact-levels seems to be a further irreducible fact [Lynch/Glasgow]
     Full Idea: It seems unavoidable that the facts about logically necessary relations between levels of facts are themselves logically distinct further facts, irreducible to the microphysical facts.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], C)
     A reaction: I'm beginning to think that rejecting every theory of reality that is proposed by carefully exposing some infinite regress hidden in it is a rather lazy way to do philosophy. Almost as bad as rejecting anything if it can't be defined.
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
If some facts 'logically supervene' on some others, they just redescribe them, adding nothing [Lynch/Glasgow]
     Full Idea: Logical supervenience, restricted to individuals, seems to imply strong reduction. It is said that where the B-facts logically supervene on the A-facts, the B-facts simply re-describe what the A-facts describe, and the B-facts come along 'for free'.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], C)
     A reaction: This seems to be taking 'logically' to mean 'analytically'. Presumably an entailment is logically supervenient on its premisses, and may therefore be very revealing, even if some people think such things are analytic.
7. Existence / D. Theories of Reality / 6. Physicalism
Nonreductive materialism says upper 'levels' depend on lower, but don't 'reduce' [Lynch/Glasgow]
     Full Idea: The root intuition behind nonreductive materialism is that reality is composed of ontologically distinct layers or levels. …The upper levels depend on the physical without reducing to it.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], B)
     A reaction: A nice clear statement of a view which I take to be false. This relationship is the sort of thing that drives people fishing for an account of it to use the word 'supervenience', which just says two things seem to hang out together. Fluffy materialism.
The hallmark of physicalism is that each causal power has a base causal power under it [Lynch/Glasgow]
     Full Idea: Jessica Wilson (1999) says what makes physicalist accounts different from emergentism etc. is that each individual causal power associated with a supervenient property is numerically identical with a causal power associated with its base property.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], n 11)
     A reaction: Hence the key thought in so-called (serious, rather than self-evident) 'emergentism' is so-called 'downward causation', which I take to be an idle daydream.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
First- and second-order quantifiers are two ways of referring to the same things [Boolos]
     Full Idea: Ontological commitment is carried by first-order quantifiers; a second-order quantifier needn't be taken to be a first-order quantifier in disguise, having special items, collections, as its range. They are two ways of referring to the same things.
     From: George Boolos (To be is to be the value of a variable.. [1984], p.72)
     A reaction: If second-order quantifiers are just a way of referring, then we can see first-order quantifiers that way too, so we could deny 'objects'.
8. Modes of Existence / D. Universals / 1. Universals
It is lunacy to think we only see ink-marks, and not word-types [Boolos]
     Full Idea: It's a kind of lunacy to think that sound scientific philosophy demands that we think that we see ink-tracks but not words, i.e. word-types.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.128)
     A reaction: This seems to link him with Armstrong's mockery of 'ostrich nominalism'. There seems to be some ambiguity with the word 'see' in this disagreement. When we look at very ancient scratches on stones, why don't we always 'see' if it is words?
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
I am a fan of abstract objects, and confident of their existence [Boolos]
     Full Idea: I am rather a fan of abstract objects, and confident of their existence. Smaller numbers, sets and functions don't offend my sense of reality.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.128)
     A reaction: The great Boolos is rather hard to disagree with, but I disagree. Logicians love abstract objects, indeed they would almost be out of a job without them. It seems to me they smuggle them into our ontology by redefining either 'object' or 'exists'.
9. Objects / A. Existence of Objects / 2. Abstract Objects / b. Need for abstracta
Abstract objects were a bad way of explaining the structure in mathematics [Kitcher]
     Full Idea: The original introduction of abstract objects was a bad way of doing justice to the insight that mathematics is concerned with structure.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.1)
     A reaction: I'm a fan of explanations in metaphysics, and hence find the concept of 'bad' explanations in metaphysics particularly intriguing.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
We deal with abstract objects all the time: software, poems, mistakes, triangles.. [Boolos]
     Full Idea: We twentieth century city dwellers deal with abstract objects all the time, such as bank balances, radio programs, software, newspaper articles, poems, mistakes, triangles.
     From: George Boolos (Must We Believe in Set Theory? [1997], p.129)
     A reaction: I find this claim to be totally question-begging, and typical of a logician. The word 'object' gets horribly stretched in these discussions. We can create concepts which have all the logical properties of objects. Maybe they just 'subsist'?
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
Many necessities are inexpressible, and unknowable a priori [Kitcher]
     Full Idea: There are plenty of necessary truths that we are unable to express, let alone know a priori.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §II)
     A reaction: This certainly seems to put paid to any simplistic idea that the a priori and the necessary are totally coextensive. We might, I suppose, claim that all necessities are a priori for the Archangel Gabriel (or even a very bright cherub). Cf. Idea 12429.
10. Modality / D. Knowledge of Modality / 2. A Priori Contingent
Knowing our own existence is a priori, but not necessary [Kitcher]
     Full Idea: What is known a priori may not be necessary, if we know a priori that we ourselves exist and are actual.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §II)
     A reaction: Compare Idea 12428, which challenges the inverse of this relationship. This one looks equally convincing, and Kripke adds other examples of contingent a priori truths, such as those referring to the metre rule in Paris.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
A priori knowledge comes from available a priori warrants that produce truth [Kitcher]
     Full Idea: X knows a priori that p iff the belief was produced with an a priori warrant, which is a process which is available to X, and this process is a warrant, and it makes p true.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.4)
     A reaction: [compression of a formal spelling-out] This is a modified version of Goldman's reliabilism, for a priori knowledge. It sounds a bit circular and uninformative, but it's a start.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
In long mathematical proofs we can't remember the original a priori basis [Kitcher]
     Full Idea: When we follow long mathematical proofs we lose our a priori warrants for their beginnings.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 02.2)
     A reaction: Kitcher says Descartes complains about this problem several times in his 'Regulae'. The problem runs even deeper into all reasoning, if you become sceptical about memory. You have to remember step 1 when you do step 2.
12. Knowledge Sources / A. A Priori Knowledge / 9. A Priori from Concepts
Knowledge is a priori if the experience giving you the concepts thus gives you the knowledge [Kitcher]
     Full Idea: Knowledge is independent of experience if any experience which would enable us to acquire the concepts involved would enable us to have the knowledge.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.3)
     A reaction: This is the 'conceptualist' view of a priori knowledge, which Kitcher goes on to attack, preferring a 'constructivist' view. The formula here shows that we can't divorce experience entirely from a priori thought. I find conceptualism a congenial view.
12. Knowledge Sources / A. A Priori Knowledge / 10. A Priori as Subjective
We have some self-knowledge a priori, such as knowledge of our own existence [Kitcher]
     Full Idea: One can make a powerful case for supposing that some self-knowledge is a priori. At most, if not all, of our waking moments, each of us knows of herself that she exists.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.6)
     A reaction: This is a begrudging concession from a strong opponent to the whole notion of a priori knowledge. I suppose if you ask 'what can be known by thought alone?' then truths about thought ought to be fairly good initial candidates.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
A 'warrant' is a process which ensures that a true belief is knowledge [Kitcher]
     Full Idea: A 'warrant' refers to those processes which produce belief 'in the right way': X knows that p iff p, and X believes that p, and X's belief that p was produced by a process which is a warrant for it.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.2)
     A reaction: That is, a 'warrant' is a justification which makes a belief acceptable as knowledge. Traditionally, warrants give you certainty (and are, consequently, rather hard to find). I would say, in the modern way, that warrants are agreed by social convention.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / c. Defeasibility
If experiential can defeat a belief, then its justification depends on the defeater's absence [Kitcher, by Casullo]
     Full Idea: According to Kitcher, if experiential evidence can defeat someone's justification for a belief, then their justification depends on the absence of that experiential evidence.
     From: report of Philip Kitcher (The Nature of Mathematical Knowledge [1984], p.89) by Albert Casullo - A Priori Knowledge 2.3
     A reaction: Sounds implausible. There are trillions of possible defeaters for most beliefs, but to say they literally depend on trillions of absences seems a very odd way of seeing the situation
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Idealisation trades off accuracy for simplicity, in varying degrees [Kitcher]
     Full Idea: To idealize is to trade accuracy in describing the actual for simplicity of description, and the compromise can sometimes be struck in different ways.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: There is clearly rather more to idealisation than mere simplicity. A matchstick man is not an ideal man.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
An 'abstraction principle' says two things are identical if they are 'equivalent' in some respect [Boolos]
     Full Idea: Hume's Principle has a structure Boolos calls an 'abstraction principle'. Within the scope of two universal quantifiers, a biconditional connects an identity between two things and an equivalence relation. It says we don't care about other differences.
     From: George Boolos (Is Hume's Principle analytic? [1997]), quoted by Michèle Friend - Introducing the Philosophy of Mathematics 3.7
     A reaction: This seems to be the traditional principle of abstraction by ignoring some properties, but dressed up in the clothes of formal logic. Frege tries to eliminate psychology, but Boolos implies that what we 'care about' is relevant.