Combining Philosophers

All the ideas for Lynch,MP/Glasgow,JM, Keith Hossack and ystein Linnebo

unexpand these ideas     |    start again     |     specify just one area for these philosophers


65 ideas

2. Reason / D. Definition / 12. Paraphrase
'Some critics admire only one another' cannot be paraphrased in singular first-order [Linnebo]
     Full Idea: The Geach-Kaplan sentence 'Some critics admire only one another' provably has no singular first-order paraphrase using only its predicates.
     From: Øystein Linnebo (Plural Quantification [2008], 1)
     A reaction: There seems to be a choice of either going second-order (picking out a property), or going plural (collectively quantifying), or maybe both.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice is a non-logical principle of set-theory [Hossack]
     Full Idea: The Axiom of Choice seems better treated as a non-logical principle of set-theory.
     From: Keith Hossack (Plurals and Complexes [2000], 4 n8)
     A reaction: This reinforces the idea that set theory is not part of logic (and so pure logicism had better not depend on set theory).
The Axiom of Choice guarantees a one-one correspondence from sets to ordinals [Hossack]
     Full Idea: We cannot explicitly define one-one correspondence from the sets to the ordinals (because there is no explicit well-ordering of R). Nevertheless, the Axiom of Choice guarantees that a one-one correspondence does exist, even if we cannot define it.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / n. Axiom of Comprehension
A comprehension axiom is 'predicative' if the formula has no bound second-order variables [Linnebo]
     Full Idea: If φ contains no bound second-order variables, the corresponding comprehension axiom is said to be 'predicative'; otherwise it is 'impredicative'.
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §1)
     A reaction: ['Predicative' roughly means that a new predicate is created, and 'impredicative' means that it just uses existing predicates]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory says any formula defines a set, and coextensive sets are identical [Linnebo]
     Full Idea: Naïve set theory is based on the principles that any formula defines a set, and that coextensive sets are identical.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.2)
     A reaction: The second principle is a standard axiom of ZFC. The first principle causes the trouble.
Predicativism says only predicated sets exist [Hossack]
     Full Idea: Predicativists doubt the existence of sets with no predicative definition.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 02.3)
     A reaction: This would imply that sets which encounter paradoxes when they try to be predicative do not therefore exist. Surely you can have a set of random objects which don't fall under a single predicate?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception has to appropriate Replacement, to justify the ordinals [Hossack]
     Full Idea: The iterative conception justifies Power Set, but cannot justify a satisfactory theory of von Neumann ordinals, so ZFC appropriates Replacement from NBG set theory.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: The modern approach to axioms, where we want to prove something so we just add an axiom that does the job.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size justifies Replacement, but then has to appropriate Power Set [Hossack]
     Full Idea: The limitation of size conception of sets justifies the axiom of Replacement, but cannot justify Power Set, so NBG set theory appropriates the Power Set axiom from ZFC.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: Which suggests that the Power Set axiom is not as indispensable as it at first appears to be.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe we reduce sets to ordinals, rather than the other way round [Hossack]
     Full Idea: We might reduce sets to ordinal numbers, thereby reversing the standard set-theoretical reduction of ordinals to sets.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
     A reaction: He has demonstrated that there are as many ordinals as there are sets.
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
Extensional mereology needs two definitions and two axioms [Hossack]
     Full Idea: Extensional mereology defs: 'distinct' things have no parts in common; a 'fusion' has some things all of which are parts, with no further parts. Axioms: (transitivity) a part of a part is part of the whole; (sums) any things have a unique fusion.
     From: Keith Hossack (Plurals and Complexes [2000], 5)
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
A 'pure logic' must be ontologically innocent, universal, and without presuppositions [Linnebo]
     Full Idea: I offer these three claims as a partial analysis of 'pure logic': ontological innocence (no new entities are introduced), universal applicability (to any realm of discourse), and cognitive primacy (no extra-logical ideas are presupposed).
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §1)
A pure logic is wholly general, purely formal, and directly known [Linnebo]
     Full Idea: The defining features of a pure logic are its absolute generality (the objects of discourse are irrelevant), and its formality (logical truths depend on form, not matter), and its cognitive primacy (no extra-logical understanding is needed to grasp it).
     From: Øystein Linnebo (Plural Quantification [2008], 3)
     A reaction: [compressed] This strikes me as very important. The above description seems to contain no ontological commitment at all, either to the existence of something, or to two things, or to numbers, or to a property. Pure logic seems to be 'if-thenism'.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / d. and
The connective 'and' can have an order-sensitive meaning, as 'and then' [Hossack]
     Full Idea: The sentence connective 'and' also has an order-sensitive meaning, when it means something like 'and then'.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.4)
     A reaction: This is support the idea that orders are a feature of reality, just as much as possible concatenation. Relational predicates, he says, refer to series rather than to individuals. Nice point.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
'Before' and 'after' are not two relations, but one relation with two orders [Hossack]
     Full Idea: The reason the two predicates 'before' and 'after' are needed is not to express different relations, but to indicate its order. Since there can be difference of order without difference of relation, the nature of relations is not the source of order.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.3)
     A reaction: This point is to refute Russell's 1903 claim that order arises from the nature of relations. Hossack claims that it is ordered series which are basic. I'm inclined to agree with him.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Plural definite descriptions pick out the largest class of things that fit the description [Hossack]
     Full Idea: If we extend the power of language with plural definite descriptions, these would pick out the largest class of things that fit the description.
     From: Keith Hossack (Plurals and Complexes [2000], 3)
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plural quantification depends too heavily on combinatorial and set-theoretic considerations [Linnebo]
     Full Idea: If my arguments are correct, the theory of plural quantification has no right to the title 'logic'. ...The impredicative plural comprehension axioms depend too heavily on combinatorial and set-theoretic considerations.
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §4)
Second-order quantification and plural quantification are different [Linnebo]
     Full Idea: Second-order quantification and plural quantification are generally regarded as different forms of quantification.
     From: Øystein Linnebo (Plural Quantification [2008], 2)
Traditionally we eliminate plurals by quantifying over sets [Linnebo]
     Full Idea: The traditional view in analytic philosophy has been that all plural locutions should be paraphrased away by quantifying over sets, though Boolos and other objected that this is unnatural and unnecessary.
     From: Øystein Linnebo (Plural Quantification [2008], 5)
Instead of complex objects like tables, plurally quantify over mereological atoms tablewise [Linnebo]
     Full Idea: Plural quantification can be used to eliminate the commitment of science and common sense to complex objects. We can use plural quantification over mereological atoms arranged tablewise or chairwise.
     From: Øystein Linnebo (Plural Quantification [2008], 4.5)
     A reaction: [He cites Hossack and van Ingwagen]
Can second-order logic be ontologically first-order, with all the benefits of second-order? [Linnebo]
     Full Idea: According to its supporters, second-order logic allow us to pay the ontological price of a mere first-order theory and get the corresponding monadic second-order theory for free.
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §0)
Plural plurals are unnatural and need a first-level ontology [Linnebo]
     Full Idea: Higher-order plural quantification (plural plurals) is often rejected because plural quantification is supposedly ontological innocent, with no plural things to be plural, and because it is not found in ordinary English.
     From: Øystein Linnebo (Plural Quantification [2008], 2.4)
     A reaction: [Summary; he cites Boolos as a notable rejector] Linnebo observes that Icelandic contains a word 'tvennir' which means 'two pairs of'.
Plural quantification may allow a monadic second-order theory with first-order ontology [Linnebo]
     Full Idea: Plural quantification seems to offer ontological economy. We can pay the price of a mere first-order theory and then use plural quantification to get for free the corresponding monadic second-order theory, which would be an ontological bargain.
     From: Øystein Linnebo (Plural Quantification [2008], 4.4)
     A reaction: [He mentions Hellman's modal structuralism in mathematics]
Plural reference will refer to complex facts without postulating complex things [Hossack]
     Full Idea: It may be that plural reference gives atomism the resources to state complex facts without needing to refer to complex things.
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: This seems the most interesting metaphysical implication of the possibility of plural quantification.
Plural reference is just an abbreviation when properties are distributive, but not otherwise [Hossack]
     Full Idea: If all properties are distributive, plural reference is just a handy abbreviation to avoid repetition (as in 'A and B are hungry', to avoid 'A is hungry and B is hungry'), but not all properties are distributive (as in 'some people surround a table').
     From: Keith Hossack (Plurals and Complexes [2000], 2)
     A reaction: The characteristic examples to support plural quantification involve collective activity and relations, which might be weeded out of our basic ontology, thus leaving singular quantification as sufficient.
A plural comprehension principle says there are some things one of which meets some condition [Hossack]
     Full Idea: Singular comprehension principles have a bad reputation, but the plural comprehension principle says that given a condition on individuals, there are some things such that something is one of them iff it meets the condition.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
In classical semantics singular terms refer, and quantifiers range over domains [Linnebo]
     Full Idea: In classical semantics the function of singular terms is to refer, and that of quantifiers, to range over appropriate domains of entities.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 7.1)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The axioms of group theory are not assertions, but a definition of a structure [Linnebo]
     Full Idea: Considered in isolation, the axioms of group theory are not assertions but comprise an implicit definition of some abstract structure,
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 3.5)
     A reaction: The traditional Euclidean approach is that axioms are plausible assertions with which to start. The present idea sums up the modern approach. In the modern version you can work backwards from a structure to a set of axioms.
To investigate axiomatic theories, mathematics needs its own foundational axioms [Linnebo]
     Full Idea: Mathematics investigates the deductive consequences of axiomatic theories, but it also needs its own foundational axioms in order to provide models for its various axiomatic theories.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.1)
     A reaction: This is a problem which faces the deductivist (if-then) approach. The deductive process needs its own grounds.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
Plural language can discuss without inconsistency things that are not members of themselves [Hossack]
     Full Idea: In a plural language we can discuss without fear of inconsistency the things that are not members of themselves.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
     A reaction: [see Hossack for details]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The theory of the transfinite needs the ordinal numbers [Hossack]
     Full Idea: The theory of the transfinite needs the ordinal numbers.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
I take the real numbers to be just lengths [Hossack]
     Full Idea: I take the real numbers to be just lengths.
     From: Keith Hossack (Plurals and Complexes [2000], 9)
     A reaction: I love it. Real numbers are beginning to get on my nerves. They turn up to the party with no invitation and improperly dressed, and then refuse to give their names when challenged.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Transfinite ordinals are needed in proof theory, and for recursive functions and computability [Hossack]
     Full Idea: The transfinite ordinal numbers are important in the theory of proofs, and essential in the theory of recursive functions and computability. Mathematics would be incomplete without them.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.1)
     A reaction: Hossack offers this as proof that the numbers are not human conceptual creations, but must exist beyond the range of our intellects. Hm.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
A plural language gives a single comprehensive induction axiom for arithmetic [Hossack]
     Full Idea: A language with plurals is better for arithmetic. Instead of a first-order fragment expressible by an induction schema, we have the complete truth with a plural induction axiom, beginning 'If there are some numbers...'.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
You can't prove consistency using a weaker theory, but you can use a consistent theory [Linnebo]
     Full Idea: If the 2nd Incompleteness Theorem undermines Hilbert's attempt to use a weak theory to prove the consistency of a strong one, it is still possible to prove the consistency of one theory, assuming the consistency of another theory.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 4.6)
     A reaction: Note that this concerns consistency, not completeness.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
In arithmetic singularists need sets as the instantiator of numeric properties [Hossack]
     Full Idea: In arithmetic singularists need sets as the instantiator of numeric properties.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
Set theory is the science of infinity [Hossack]
     Full Idea: Set theory is the science of infinity.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Numbers are properties, not sets (because numbers are magnitudes) [Hossack]
     Full Idea: I propose that numbers are properties, not sets. Magnitudes are a kind of property, and numbers are magnitudes. …Natural numbers are properties of pluralities, positive reals of continua, and ordinals of series.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro)
     A reaction: Interesting! Since time can have a magnitude (three weeks) just as liquids can (three litres), it is not clear that there is a single natural property we can label 'magnitude'. Anything we can manage to measure has a magnitude.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Mathematics is the study of all possible patterns, and is thus bound to describe the world [Linnebo]
     Full Idea: Philosophical structuralism holds that mathematics is the study of abstract structures, or 'patterns'. If mathematics is the study of all possible patterns, then it is inevitable that the world is described by mathematics.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 11.1)
     A reaction: [He cites the physicist John Barrow (2010) for this] For me this is a major idea, because the concept of a pattern gives a link between the natural physical world and the abstract world of mathematics. No platonism is needed.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
'Deductivist' structuralism is just theories, with no commitment to objects, or modality [Linnebo]
     Full Idea: The 'deductivist' version of eliminativist structuralism avoids ontological commitments to mathematical objects, and to modal vocabulary. Mathematics is formulations of various (mostly categorical) theories to describe kinds of concrete structures.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], 1)
     A reaction: 'Concrete' is ambiguous here, as mathematicians use it for the actual working maths, as opposed to the metamathematics. Presumably the structures are postulated rather than described. He cites Russell 1903 and Putnam. It is nominalist.
Non-eliminative structuralism treats mathematical objects as positions in real abstract structures [Linnebo]
     Full Idea: The 'non-eliminative' version of mathematical structuralism takes it to be a fundamental insight that mathematical objects are really just positions in abstract mathematical structures.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: The point here is that it is non-eliminativist because it is committed to the existence of mathematical structures. I oppose this view, since once you are committed to the structures, you may as well admit a vast implausible menagerie of abstracta.
'Modal' structuralism studies all possible concrete models for various mathematical theories [Linnebo]
     Full Idea: The 'modal' version of eliminativist structuralism lifts the deductivist ban on modal notions. It studies what necessarily holds in all concrete models which are possible for various theories.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: [He cites Putnam 1967, and Hellman 1989] If mathematical truths are held to be necessary (which seems to be right), then it seems reasonable to include modal notions, about what is possible, in its study.
'Set-theoretic' structuralism treats mathematics as various structures realised among the sets [Linnebo]
     Full Idea: 'Set-theoretic' structuralism rejects deductive nominalism in favour of a background theory of sets, and mathematics as the various structures realized among the sets. This is often what mathematicians have in mind when they talk about structuralism.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], I)
     A reaction: This is the big shift from 'mathematics can largely be described in set theory' to 'mathematics just is set theory'. If it just is set theory, then which version of set theory? Which axioms? The safe iterative conception, or something bolder?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
Structuralism differs from traditional Platonism, because the objects depend ontologically on their structure [Linnebo]
     Full Idea: Structuralism can be distinguished from traditional Platonism in that it denies that mathematical objects from the same structure are ontologically independent of one another
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], III)
     A reaction: My instincts strongly cry out against all versions of this. If you are going to be a platonist (rather as if you are going to be religious) you might as well go for it big time and have independent objects, which will then dictate a structure.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Structuralism is right about algebra, but wrong about sets [Linnebo]
     Full Idea: Against extreme views that all mathematical objects depend on the structures to which they belong, or that none do, I defend a compromise view, that structuralists are right about algebraic objects (roughly), but anti-structuralists are right about sets.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], Intro)
In mathematical structuralism the small depends on the large, which is the opposite of physical structures [Linnebo]
     Full Idea: If objects depend on the other objects, this would mean an 'upward' dependence, in that they depend on the structure to which they belong, where the physical realm has a 'downward' dependence, with structures depending on their constituents.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], III)
     A reaction: This nicely captures an intuition I have that there is something wrong with a commitment primarily to 'structures'. Our only conception of such things is as built up out of components. Not that I am committing to mathematical 'components'!
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We can only mentally construct potential infinities, but maths needs actual infinities [Hossack]
     Full Idea: Numbers cannot be mental objects constructed by our own minds: there exists at most a potential infinity of mental constructions, whereas the axioms of mathematics require an actual infinity of numbers.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro 2)
     A reaction: Doubt this, but don't know enough to refute it. Actual infinities were a fairly late addition to maths, I think. I would think treating fictional complete infinities as real would be sufficient for the job. Like journeys which include imagined roads.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logical truth is true in all models, so mathematical objects can't be purely logical [Linnebo]
     Full Idea: Modern logic requires that logical truths be true in all models, including ones devoid of any mathematical objects. It follows immediately that the existence of mathematical objects can never be a matter of logic alone.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 2)
     A reaction: Hm. Could there not be a complete set of models for a theory which all included mathematical objects? (I can't answer that).
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Game Formalism has no semantics, and Term Formalism reduces the semantics [Linnebo]
     Full Idea: Game Formalism seeks to banish all semantics from mathematics, and Term Formalism seeks to reduce any such notions to purely syntactic ones.
     From: Øystein Linnebo (Philosophy of Mathematics [2017], 3.3)
     A reaction: This approach was stimulated by the need to justify the existence of the imaginary number i. Just say it is a letter!
7. Existence / C. Structure of Existence / 3. Levels of Reality
A necessary relation between fact-levels seems to be a further irreducible fact [Lynch/Glasgow]
     Full Idea: It seems unavoidable that the facts about logically necessary relations between levels of facts are themselves logically distinct further facts, irreducible to the microphysical facts.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], C)
     A reaction: I'm beginning to think that rejecting every theory of reality that is proposed by carefully exposing some infinite regress hidden in it is a rather lazy way to do philosophy. Almost as bad as rejecting anything if it can't be defined.
7. Existence / C. Structure of Existence / 4. Ontological Dependence
There may be a one-way direction of dependence among sets, and among natural numbers [Linnebo]
     Full Idea: We can give an exhaustive account of the identity of the empty set and its singleton without mentioning infinite sets, and it might be possible to defend the view that one natural number depends on its predecessor but not vice versa.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], V)
     A reaction: Linnebo uses this as one argument against mathematical structuralism, where the small seems to depend on the large. The view of sets rests on the iterative conception, where each level is derived from a lower level. He dismisses structuralism of sets.
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
If some facts 'logically supervene' on some others, they just redescribe them, adding nothing [Lynch/Glasgow]
     Full Idea: Logical supervenience, restricted to individuals, seems to imply strong reduction. It is said that where the B-facts logically supervene on the A-facts, the B-facts simply re-describe what the A-facts describe, and the B-facts come along 'for free'.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], C)
     A reaction: This seems to be taking 'logically' to mean 'analytically'. Presumably an entailment is logically supervenient on its premisses, and may therefore be very revealing, even if some people think such things are analytic.
7. Existence / D. Theories of Reality / 6. Physicalism
Nonreductive materialism says upper 'levels' depend on lower, but don't 'reduce' [Lynch/Glasgow]
     Full Idea: The root intuition behind nonreductive materialism is that reality is composed of ontologically distinct layers or levels. …The upper levels depend on the physical without reducing to it.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], B)
     A reaction: A nice clear statement of a view which I take to be false. This relationship is the sort of thing that drives people fishing for an account of it to use the word 'supervenience', which just says two things seem to hang out together. Fluffy materialism.
The hallmark of physicalism is that each causal power has a base causal power under it [Lynch/Glasgow]
     Full Idea: Jessica Wilson (1999) says what makes physicalist accounts different from emergentism etc. is that each individual causal power associated with a supervenient property is numerically identical with a causal power associated with its base property.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], n 11)
     A reaction: Hence the key thought in so-called (serious, rather than self-evident) 'emergentism' is so-called 'downward causation', which I take to be an idle daydream.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We speak of a theory's 'ideological commitments' as well as its 'ontological commitments' [Linnebo]
     Full Idea: Some philosophers speak about a theory's 'ideological commitments' and not just about its 'ontological commitments'.
     From: Øystein Linnebo (Plural Quantification [2008], 5.4)
     A reaction: This is a third strategy for possibly evading one's ontological duty, along with fiddling with the words 'exist' or 'object'. An ideological commitment to something to which one is not actually ontologically committed conjures up stupidity and dogma.
We are committed to a 'group' of children, if they are sitting in a circle [Hossack]
     Full Idea: By Quine's test of ontological commitment, if some children are sitting in a circle, no individual child can sit in a circle, so a singular paraphrase will have us committed to a 'group' of children.
     From: Keith Hossack (Plurals and Complexes [2000], 2)
     A reaction: Nice of why Quine is committed to the existence of sets. Hossack offers plural quantification as a way of avoiding commitment to sets. But is 'sitting in a circle' a real property (in the Shoemaker sense)? I can sit in a circle without realising it.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
Ordinary speakers posit objects without concern for ontology [Linnebo]
     Full Idea: Maybe ordinary speakers aren't very concerned about their ontological commitments, and sometimes find it convenient to posit objects.
     From: Øystein Linnebo (Plural Quantification [2008], 2.4)
     A reaction: I think this is the whole truth about the ontological commitment of ordinary language. We bring abstraction under control by pretending it is a world of physical objects. The 'left wing' in politics, 'dark deeds', a 'huge difference'.
8. Modes of Existence / B. Properties / 4. Intrinsic Properties
An 'intrinsic' property is either found in every duplicate, or exists independent of all externals [Linnebo]
     Full Idea: There are two main ways of spelling out an 'intrinsic' property: if and only if it is shared by every duplicate of an object, ...and if and only if the object would have this property even if the rest of the universe were removed or disregarded.
     From: Øystein Linnebo (Structuralism and the Notion of Dependence [2008], II)
     A reaction: [He cites B.Weatherson's Stanford Encyclopaedia article] How about an intrinsic property being one which explains its identity, or behaviour, or persistence conditions?
9. Objects / A. Existence of Objects / 1. Physical Objects
The modern concept of an object is rooted in quantificational logic [Linnebo]
     Full Idea: Our modern general concept of an object is given content only in connection with modern quantificational logic.
     From: Øystein Linnebo (Plural Quantification Exposed [2003], §2)
     A reaction: [He mentions Frege, Carnap, Quine and Dummett] This is the first thing to tell beginners in modern analytical metaphysics. The word 'object' is very confusing. I think I prefer 'entity'.
9. Objects / C. Structure of Objects / 5. Composition of an Object
Complex particulars are either masses, or composites, or sets [Hossack]
     Full Idea: Complex particulars are of at least three types: masses (which sum, of which we do not ask 'how many?' but 'how much?'); composite individuals (how many?, and summing usually fails); and sets (only divisible one way, unlike composites).
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: A composite pile of grains of sand gradually becomes a mass, and drops of water become 'water everywhere'. A set of people divides into individual humans, but redescribe the elements as the union of males and females?
The relation of composition is indispensable to the part-whole relation for individuals [Hossack]
     Full Idea: The relation of composition seems to be indispensable in a correct account of the part-whole relation for individuals.
     From: Keith Hossack (Plurals and Complexes [2000], 7)
     A reaction: This is the culmination of a critical discussion of mereology and ontological atomism. At first blush it doesn't look as if 'composition' has much chance of being a precise notion, and it will be plagued with vagueness.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Leibniz's Law argues against atomism - water is wet, unlike water molecules [Hossack]
     Full Idea: We can employ Leibniz's Law against mereological atomism. Water is wet, but no water molecule is wet. The set of infinite numbers is infinite, but no finite number is infinite. ..But with plural reference the atomist can resist this argument.
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: The idea of plural reference is to state plural facts without referring to complex things, which is interesting. The general idea is that we have atomism, and then all the relations, unities, identities etc. are in the facts, not in the things. I like it.
The fusion of five rectangles can decompose into more than five parts that are rectangles [Hossack]
     Full Idea: The fusion of five rectangles may have a decomposition into more than five parts that are rectangles.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
18. Thought / A. Modes of Thought / 1. Thought
A thought can refer to many things, but only predicate a universal and affirm a state of affairs [Hossack]
     Full Idea: A thought can refer to a particular or a universal or a state of affairs, but it can predicate only a universal and it can affirm only a state of affairs.
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: Hossack is summarising Armstrong's view, which he is accepting. To me, 'thought' must allow for animals, unlike language. I think Hossack's picture is much too clear-cut. Do animals grasp universals? Doubtful. Can they predicate? Yes.
19. Language / C. Assigning Meanings / 3. Predicates
Predicates are 'distributive' or 'non-distributive'; do individuals do what the group does? [Linnebo]
     Full Idea: The predicate 'is on the table' is 'distributive', since some things are on the table if each one is, whereas the predicate 'form a circle' is 'non-distributive', since it is not analytic that when some things form a circle, each one forms a circle.
     From: Øystein Linnebo (Plural Quantification [2008], 1.1)
     A reaction: The first predicate can have singular or plural subjects, but the second requires a plural subject? Hm. 'The rope forms a circle'. The second is example is not true, as well as not analytic.
27. Natural Reality / C. Space / 2. Space
We could ignore space, and just talk of the shape of matter [Hossack]
     Full Idea: We might dispense with substantival space, and say that if the distribution of matter in space could have been different, that just means the matter of the Universe could have been shaped differently (with geometry as the science of shapes).
     From: Keith Hossack (Plurals and Complexes [2000], 9)