Combining Philosophers

All the ideas for Lynch,MP/Glasgow,JM, Michle Friend and Crispin Wright

unexpand these ideas     |    start again     |     specify just one area for these philosophers


83 ideas

1. Philosophy / C. History of Philosophy / 1. History of Philosophy
We can only learn from philosophers of the past if we accept the risk of major misrepresentation [Wright,C]
     Full Idea: We can learn from the work of philosophers of other periods only if we are prepared to run the risk of radical and almost inevitable misrepresentation of his thought.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Pref)
     A reaction: This sounds about right, and a motto for my own approach to Aristotle and Leibniz, but I see the effort as more collaborative than this suggests. Professional specialists in older philosophers are a vital part of the team. Read them!
2. Reason / C. Styles of Reason / 1. Dialectic
The best way to understand a philosophical idea is to defend it [Wright,C]
     Full Idea: The most productive way in which to attempt an understanding of any philosophical idea is to work on its defence.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.vii)
     A reaction: Very nice. The key point is that this brings greater understanding than working on attacking an idea, which presumably has the dangers of caricature, straw men etc. It is the Socratic insight that dialectic is the route to wisdom.
2. Reason / D. Definition / 7. Contextual Definition
The attempt to define numbers by contextual definition has been revived [Wright,C, by Fine,K]
     Full Idea: Frege gave up on the attempt to introduce natural numbers by contextual definition, but the project has been revived by neo-logicists.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Kit Fine - The Limits of Abstraction II
2. Reason / D. Definition / 8. Impredicative Definition
An 'impredicative' definition seems circular, because it uses the term being defined [Friend]
     Full Idea: An 'impredicative' definition is one that uses the terms being defined in order to give the definition; in some way the definition is then circular.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], Glossary)
     A reaction: There has been a big controversy in the philosophy of mathematics over these. Shapiro gives the definition of 'village idiot' (which probably mentions 'village') as an example.
2. Reason / D. Definition / 10. Stipulative Definition
Classical definitions attempt to refer, but intuitionist/constructivist definitions actually create objects [Friend]
     Full Idea: In classical logic definitions are thought of as revealing our attempts to refer to objects, ...but for intuitionist or constructivist logics, if our definitions do not uniquely characterize an object, we are not entitled to discuss the object.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.4)
     A reaction: In defining a chess piece we are obviously creating. In defining a 'tree' we are trying to respond to fact, but the borderlines are vague. Philosophical life would be easier if we were allowed a mixture of creation and fact - so let's have that.
2. Reason / E. Argument / 5. Reductio ad Absurdum
Reductio ad absurdum proves an idea by showing that its denial produces contradiction [Friend]
     Full Idea: Reductio ad absurdum arguments are ones that start by denying what one wants to prove. We then prove a contradiction from this 'denied' idea and more reasonable ideas in one's theory, showing that we were wrong in denying what we wanted to prove.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is a mathematical definition, which rests on logical contradiction, but in ordinary life (and philosophy) it would be enough to show that denial led to absurdity, rather than actual contradiction.
3. Truth / A. Truth Problems / 8. Subjective Truth
Anti-realists see truth as our servant, and epistemically contrained [Friend]
     Full Idea: For the anti-realist, truth belongs to us, it is our servant, and as such, it must be 'epistemically constrained'.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.1)
     A reaction: Put as clearly as this, it strikes me as being utterly and spectacularly wrong, a complete failure to grasp the elementary meaning of a concept etc. etc. If we aren't the servants of truth then we jolly we ought to be. Truth is above us.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
In classical/realist logic the connectives are defined by truth-tables [Friend]
     Full Idea: In the classical or realist view of logic the meaning of abstract symbols for logical connectives is given by the truth-tables for the symbol.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007])
     A reaction: Presumably this is realist because it connects them to 'truth', but only if that involves a fairly 'realist' view of truth. You could, of course, translate 'true' and 'false' in the table to empty (formalist) symbols such a 0 and 1. Logic is electronics.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Double negation elimination is not valid in intuitionist logic [Friend]
     Full Idea: In intuitionist logic, if we do not know that we do not know A, it does not follow that we know A, so the inference (and, in general, double negation elimination) is not intuitionistically valid.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: That inference had better not be valid in any logic! I am unaware of not knowing the birthday of someone I have never heard of. Propositional attitudes such as 'know' are notoriously difficult to explain in formal logic.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic was developed for fictional or non-existent objects [Friend]
     Full Idea: Free logic is especially designed to help regiment our reasoning about fictional objects, or nonexistent objects of some sort.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.7)
     A reaction: This makes it sound marginal, but I wonder whether existential commitment shouldn't be eliminated from all logic. Why do fictional objects need a different logic? What logic should we use for Robin Hood, if we aren't sure whether or not he is real?
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A 'proper subset' of A contains only members of A, but not all of them [Friend]
     Full Idea: A 'subset' of A is a set containing only members of A, and a 'proper subset' is one that does not contain all the members of A. Note that the empty set is a subset of every set, but it is not a member of every set.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Is it the same empty set in each case? 'No pens' is a subset of 'pens', but is it a subset of 'paper'? Idea 8219 should be borne in mind when discussing such things, though I am not saying I agree with it.
A 'powerset' is all the subsets of a set [Friend]
     Full Idea: The 'powerset' of a set is a set made up of all the subsets of a set. For example, the powerset of {3,7,9} is {null, {3}, {7}, {9}, {3,7}, {3,9}, {7,9}, {3,7,9}}. Taking the powerset of an infinite set gets us from one infinite cardinality to the next.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Note that the null (empty) set occurs once, but not in the combinations. I begin to have queasy sympathies with the constructivist view of mathematics at this point, since no one has the time, space or energy to 'take' an infinite powerset.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Set theory makes a minimum ontological claim, that the empty set exists [Friend]
     Full Idea: As a realist choice of what is basic in mathematics, set theory is rather clever, because it only makes a very simple ontological claim: that, independent of us, there exists the empty set. The whole hierarchy of finite and infinite sets then follows.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: Even so, for non-logicians the existence of the empty set is rather counterintuitive. "There was nobody on the road, so I overtook him". See Ideas 7035 and 8322. You might work back to the empty set, but how do you start from it?
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Infinite sets correspond one-to-one with a subset [Friend]
     Full Idea: Two sets are the same size if they can be placed in one-to-one correspondence. But even numbers have one-to-one correspondence with the natural numbers. So a set is infinite if it has one-one correspondence with a proper subset.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Dedekind's definition. We can match 1 with 2, 2 with 4, 3 with 6, 4 with 8, etc. Logicians seem happy to give as a definition anything which fixes the target uniquely, even if it doesn't give the essence. See Frege on 0 and 1, Ideas 8653/4.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Major set theories differ in their axioms, and also over the additional axioms of choice and infinity [Friend]
     Full Idea: Zermelo-Fraenkel and Gödel-Bernays set theory differ over the notions of ordinal construction and over the notion of class, among other things. Then there are optional axioms which can be attached, such as the axiom of choice and the axiom of infinity.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.6)
     A reaction: This summarises the reasons why we cannot just talk about 'set theory' as if it was a single concept. The philosophical interest I would take to be found in disentangling the ontological commitments of each version.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The law of excluded middle is syntactic; it just says A or not-A, not whether they are true or false [Friend]
     Full Idea: The law of excluded middle is purely syntactic: it says for any well-formed formula A, either A or not-A. It is not a semantic law; it does not say that either A is true or A is false. The semantic version (true or false) is the law of bivalence.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: No wonder these two are confusing, sufficiently so for a lot of professional philosophers to blur the distinction. Presumably the 'or' is exclusive. So A-and-not-A is a contradiction; but how do you explain a contradiction without mentioning truth?
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
An expression refers if it is a singular term in some true sentences [Wright,C, by Dummett]
     Full Idea: For Wright, an expression refers to an object if it fulfils the 'syntactic role' of a singular term, and if we have fixed the truth-conditions of sentences containing it in such a way that some of them come out true.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michael Dummett - Frege philosophy of mathematics Ch.15
     A reaction: Much waffle is written about reference, and it is nice to hear of someone actually trying to state the necessary and sufficient conditions for reference to be successful. So is it possible for 'the round square' to ever refer? '...is impossible to draw'
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Intuitionists read the universal quantifier as "we have a procedure for checking every..." [Friend]
     Full Idea: In the intuitionist version of quantification, the universal quantifier (normally read as "all") is understood as "we have a procedure for checking every" or "we have checked every".
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.5)
     A reaction: It seems better to describe this as 'verificationist' (or, as Dummett prefers, 'justificationist'). Intuition suggests an ability to 'see' beyond the evidence. It strikes me as bizarre to say that you can't discuss things you can't check.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Paradoxes can be solved by talking more loosely of 'classes' instead of 'sets' [Friend]
     Full Idea: The realist meets the Burali-Forti paradox by saying that all the ordinals are a 'class', not a set. A proper class is what we discuss when we say "all" the so-and-sos when they cannot be reached by normal set-construction. Grammar is their only limit.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This strategy would be useful for Class Nominalism, which tries to define properties in terms of classes, but gets tangled in paradoxes. But why bother with strict sets if easy-going classes will do just as well? Descartes's Dream: everything is rational.
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The Burali-Forti paradox asks whether the set of all ordinals is itself an ordinal [Friend]
     Full Idea: The Burali-Forti paradox says that if ordinals are defined by 'gathering' all their predecessors with the empty set, then is the set of all ordinals an ordinal? It is created the same way, so it should be a further member of this 'complete' set!
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is an example (along with Russell's more famous paradox) of the problems that began to appear in set theory in the early twentieth century. See Idea 8675 for a modern solution.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Number theory aims at the essence of natural numbers, giving their nature, and the epistemology [Wright,C]
     Full Idea: In the Fregean view number theory is a science, aimed at those truths furnished by the essential properties of zero and its successors. The two broad question are then the nature of the objects, and the epistemology of those facts.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: [compressed] I pounce on the word 'essence' here (my thing). My first question is about the extent to which the natural numbers all have one generic essence, and the extent to which they are individuals (bless their little cotton socks).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
The 'integers' are the positive and negative natural numbers, plus zero [Friend]
     Full Idea: The set of 'integers' is all of the negative natural numbers, and zero, together with the positive natural numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Zero always looks like a misfit at this party. Credit and debit explain positive and negative nicely, but what is the difference between having no money, and money being irrelevant? I can be 'broke', but can the North Pole be broke?
The 'rational' numbers are those representable as fractions [Friend]
     Full Idea: The 'rational' numbers are all those that can be represented in the form m/n (i.e. as fractions), where m and n are natural numbers different from zero.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: Pythagoreans needed numbers to stop there, in order to represent the whole of reality numerically. See irrational numbers for the ensuing disaster. How can a universe with a finite number of particles contain numbers that are not 'rational'?
A number is 'irrational' if it cannot be represented as a fraction [Friend]
     Full Idea: A number is 'irrational' just in case it cannot be represented as a fraction. An irrational number has an infinite non-repeating decimal expansion. Famous examples are pi and e.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: There must be an infinite number of irrational numbers. You could, for example, take the expansion of pi, and change just one digit to produce a new irrational number, and pi has an infinity of digits to tinker with.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
One could grasp numbers, and name sizes with them, without grasping ordering [Wright,C]
     Full Idea: Someone could be clear about number identities, and distinguish numbers from other things, without conceiving them as ordered in a progression at all. The point of them would be to make comparisons between sizes of groups.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: Hm. Could you grasp size if you couldn't grasp which of two groups was the bigger? What's the point of noting that I have ten pounds and you only have five, if you don't realise that I have more than you? You could have called them Caesar and Brutus.
The natural numbers are primitive, and the ordinals are up one level of abstraction [Friend]
     Full Idea: The natural numbers are quite primitive, and are what we first learn about. The order of objects (the 'ordinals') is one level of abstraction up from the natural numbers: we impose an order on objects.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.4)
     A reaction: Note the talk of 'levels of abstraction'. So is there a first level of abstraction? Dedekind disagrees with Friend (Idea 7524). I would say that natural numbers are abstracted from something, but I'm not sure what. See Structuralism in maths.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Cardinal numbers answer 'how many?', with the order being irrelevant [Friend]
     Full Idea: The 'cardinal' numbers answer the question 'How many?'; the order of presentation of the objects being counted as immaterial. Def: the cardinality of a set is the number of members of the set.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: If one asks whether cardinals or ordinals are logically prior (see Ideas 7524 and 8661), I am inclined to answer 'neither'. Presenting them as answers to the questions 'how many?' and 'which comes first?' is illuminating.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
The 'real' numbers (rationals and irrationals combined) is the Continuum, which has no gaps [Friend]
     Full Idea: The set of 'real' numbers, which consists of the rational numbers and the irrational numbers together, represents "the continuum", since it is like a smooth line which has no gaps (unlike the rational numbers, which have the irrationals missing).
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: The Continuum is the perfect abstract object, because a series of abstractions has arrived at a vast limit in its nature. It still has dizzying infinities contained within it, and at either end of the line. It makes you feel humble.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Instances of a non-sortal concept can only be counted relative to a sortal concept [Wright,C]
     Full Idea: The invitation to number the instances of some non-sortal concept is intelligible only if it is relativised to a sortal.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: I take this to be an essentially Fregean idea, as when we count the boots when we have decided whether they fall under the concept 'boot' or the concept 'pair'. I also take this to be the traditional question 'what units are you using'?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Raising omega to successive powers of omega reveal an infinity of infinities [Friend]
     Full Idea: After the multiples of omega, we can successively raise omega to powers of omega, and after that is done an infinite number of times we arrive at a new limit ordinal, which is called 'epsilon'. We have an infinite number of infinite ordinals.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.4)
     A reaction: When most people are dumbstruck by the idea of a single infinity, Cantor unleashes an infinity of infinities, which must be the highest into the stratosphere of abstract thought that any human being has ever gone.
The first limit ordinal is omega (greater, but without predecessor), and the second is twice-omega [Friend]
     Full Idea: The first 'limit ordinal' is called 'omega', which is ordinal because it is greater than other numbers, but it has no immediate predecessor. But it has successors, and after all of those we come to twice-omega, which is the next limit ordinal.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.4)
     A reaction: This is the gateway to Cantor's paradise of infinities, which Hilbert loved and defended. Who could resist the pleasure of being totally boggled (like Aristotle) by a concept such as infinity, only to have someone draw a map of it? See 8663 for sequel.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Between any two rational numbers there is an infinite number of rational numbers [Friend]
     Full Idea: Since between any two rational numbers there is an infinite number of rational numbers, we could consider that we have infinity in three dimensions: positive numbers, negative numbers, and the 'depth' of infinite numbers between any rational numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 1.5)
     A reaction: This is before we even reach Cantor's staggering infinities (Ideas 8662 and 8663), which presumably reside at the outer reaches of all three of these dimensions of infinity. The 'deep' infinities come from fractions with huge denominators.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Is mathematics based on sets, types, categories, models or topology? [Friend]
     Full Idea: Successful competing founding disciplines in mathematics include: the various set theories, type theory, category theory, model theory and topology.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: Or none of the above? Set theories are very popular. Type theory is, apparently, discredited. Shapiro has a version of structuralism based on model theory (which sound promising). Topology is the one that intrigues me...
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Wright thinks Hume's Principle is more fundamental to cardinals than the Peano Axioms are [Wright,C, by Heck]
     Full Idea: Wright is claiming that HP is a special sort of truth in some way: it is supposed to be the fundamental truth about cardinality; ...in particular, HP is supposed to be more fundamental, in some sense than the Dedekind-Peano axioms.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 1
     A reaction: Heck notes that although PA can be proved from HP, HP can be proven from PA plus definitions, so direction of proof won't show fundamentality. He adds that Wright thinks HP is 'more illuminating'.
There are five Peano axioms, which can be expressed informally [Wright,C]
     Full Idea: Informally, Peano's axioms are: 0 is a number, numbers have a successor, different numbers have different successors, 0 isn't a successor, properties of 0 which carry over to successors are properties of all numbers.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: Each statement of the famous axioms is slightly different from the others, and I have reworded Wright to fit him in. Since the last one (the 'induction axiom') is about properties, it invites formalization in second-order logic.
Number truths are said to be the consequence of PA - but it needs semantic consequence [Wright,C]
     Full Idea: The intuitive proposal is the essential number theoretic truths are precisely the logical consequences of the Peano axioms, ...but the notion of consequence is a semantic one...and it is not obvious that we possess a semantic notion of the requisite kind.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: (Not sure I understand this, but it is his starting point for rejecting PA as the essence of arithmetic).
What facts underpin the truths of the Peano axioms? [Wright,C]
     Full Idea: We incline to think of the Peano axioms as truths of some sort; so there has to be a philosophical question how we ought to conceive of the nature of the facts which make those statements true.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: [He also asks about how we know the truths]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Sameness of number is fundamental, not counting, despite children learning that first [Wright,C]
     Full Idea: We teach our children to count, sometimes with no attempt to explain what the sounds mean. Doubtless it is this habit which makes it so natural to think of the number series as fundamental. Frege's insight is that sameness of number is fundamental.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: 'When do children understand number?' rather than when they can recite numerals. I can't make sense of someone being supposed to understand number without a grasp of which numbers are bigger or smaller. To make 13='15' do I add or subtract?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
We derive Hume's Law from Law V, then discard the latter in deriving arithmetic [Wright,C, by Fine,K]
     Full Idea: Wright says the Fregean arithmetic can be broken down into two steps: first, Hume's Law may be derived from Law V; and then, arithmetic may be derived from Hume's Law without any help from Law V.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Kit Fine - The Limits of Abstraction I.4
     A reaction: This sounds odd if Law V is false, but presumably Hume's Law ends up as free-standing. It seems doubtful whether the resulting theory would count as logic.
Frege has a good system if his 'number principle' replaces his basic law V [Wright,C, by Friend]
     Full Idea: Wright proposed removing Frege's basic law V (which led to paradox), replacing it with Frege's 'number principle' (identity of numbers is one-to-one correspondence). The new system is formally consistent, and the Peano axioms can be derived from it.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michèle Friend - Introducing the Philosophy of Mathematics 3.7
     A reaction: The 'number principle' is also called 'Hume's principle'. This idea of Wright's resurrected the project of logicism. The jury is ought again... Frege himself questioned whether the number principle was a part of logic, which would be bad for 'logicism'.
Wright says Hume's Principle is analytic of cardinal numbers, like a definition [Wright,C, by Heck]
     Full Idea: Wright intends the claim that Hume's Principle (HP) embodies an explanation of the concept of number to imply that it is analytic of the concept of cardinal number - so it is an analytic or conceptual truth, much as a definition would be.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 1
     A reaction: Boolos is quoted as disagreeing. Wright is claiming a fundamental truth. Boolos says something can fix the character of something (as yellow fixes bananas), but that doesn't make it 'fundamental'. I want to defend 'fundamental'.
It is 1-1 correlation of concepts, and not progression, which distinguishes natural number [Wright,C]
     Full Idea: What is fundamental to possession of any notion of natural number at all is not the knowledge that the numbers may be arrayed in a progression but the knowledge that they are identified and distinguished by reference to 1-1 correlation among concepts.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: My question is 'what is the essence of number?', and my inclination to disagree with Wright on this point suggests that the essence of number is indeed caught in the Dedekind-Peano axioms. But what of infinite numbers?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
If numbers are extensions, Frege must first solve the Caesar problem for extensions [Wright,C]
     Full Idea: Identifying numbers with extensions will not solve the Caesar problem for numbers unless we have already solved the Caesar problem for extensions.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xiv)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical theories can be translated into the language of set theory [Friend]
     Full Idea: Most of mathematics can be faithfully redescribed by classical (realist) set theory. More precisely, we can translate other mathematical theories - such as group theory, analysis, calculus, arithmetic, geometry and so on - into the language of set theory.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.3)
     A reaction: This is why most mathematicians seem to regard set theory as foundational. We could also translate football matches into the language of atomic physics.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
The number 8 in isolation from the other numbers is of no interest [Friend]
     Full Idea: There is no interest for the mathematician in studying the number 8 in isolation from the other numbers.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: This is a crucial and simple point (arising during a discussion of Shapiro's structuralism). Most things are interesting in themselves, as well as for their relationships, but mathematical 'objects' just are relationships.
In structuralism the number 8 is not quite the same in different structures, only equivalent [Friend]
     Full Idea: Structuralists give a historical account of why the 'same' number occupies different structures. Numbers are equivalent rather than identical. 8 is the immediate predecessor of 9 in the whole numbers, but in the rationals 9 has no predecessor.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: I don't become a different person if I move from a detached house to a terraced house. This suggests that 8 can't be entirely defined by its relations, and yet it is hard to see what its intrinsic nature could be, apart from the units which compose it.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Are structures 'ante rem' (before reality), or are they 'in re' (grounded in physics)? [Friend]
     Full Idea: Structuralists disagree over whether objects in structures are 'ante rem' (before reality, existing independently of whether the objects exist) or 'in re' (in reality, grounded in the real world, usually in our theories of physics).
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: Shapiro holds the first view, Hellman and Resnik the second. The first view sounds too platonist and ontologically extravagant; the second sounds too contingent and limited. The correct account is somewhere in abstractions from the real.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Structuralist says maths concerns concepts about base objects, not base objects themselves [Friend]
     Full Idea: According to the structuralist, mathematicians study the concepts (objects of study) such as variable, greater, real, add, similar, infinite set, which are one level of abstraction up from prima facie base objects such as numbers, shapes and lines.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.1)
     A reaction: This still seems to imply an ontology in which numbers, shapes and lines exist. I would have thought you could eliminate the 'base objects', and just say that the concepts are one level of abstraction up from the physical world.
Structuralism focuses on relations, predicates and functions, with objects being inessential [Friend]
     Full Idea: Structuralism says we study whole structures: objects together with their predicates, relations that bear between them, and functions that take us from one domain of objects to a range of other objects. The objects can even be eliminated.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.1)
     A reaction: The unity of object and predicate is a Quinean idea. The idea that objects are inessential is the dramatic move. To me the proposal has very strong intuitive appeal. 'Eight' is meaningless out of context. Ordinality precedes cardinality? Ideas 7524/8661.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
'In re' structuralism says that the process of abstraction is pattern-spotting [Friend]
     Full Idea: In the 'in re' version of mathematical structuralism, pattern-spotting is the process of abstraction.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.4)
     A reaction: This might work for non-mathematical abstraction as well, if we are allowed to spot patterns within sensual experience, and patterns within abstractions. Properties are causal patterns in the world? No - properties cause patterns.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Number platonism says that natural number is a sortal concept [Wright,C]
     Full Idea: Number-theoretic platonism is just the thesis that natural number is a sortal concept.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: See Crispin Wright on sortals to expound this. An odd way to express platonism, but he is presenting the Fregean version of it.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
The big problem for platonists is epistemic: how do we perceive, intuit, know or detect mathematical facts? [Friend]
     Full Idea: The main philosophical problem with the position of platonism or realism is the epistemic problem: of explaining what perception or intuition consists in; how it is possible that we should accurately detect whatever it is we are realists about.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 2.5)
     A reaction: The best bet, I suppose, is that the mind directly perceives concepts just as eyes perceive the physical (see Idea 8679), but it strikes me as implausible. If we have to come up with a special mental faculty for an area of knowledge, we are in trouble.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We can't use empiricism to dismiss numbers, if numbers are our main evidence against empiricism [Wright,C]
     Full Idea: We may not be able to settle whether some general form of empiricism is correct independently of natural numbers. It might be precisely our grasp of the abstract sortal, natural number, which shows the hypothesis of empiricism to be wrong.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: A nice turning of the tables. In the end only coherence decides these things. You may accept numbers and reject empiricism, and then find you have opened the floodgates for abstracta. Excessive floodgates, or blockages of healthy streams?
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Mathematics should be treated as true whenever it is indispensable to our best physical theory [Friend]
     Full Idea: Central to naturalism about mathematics are 'indispensability arguments', to the effect that some part of mathematics is indispensable to our best physical theory, and therefore we ought to take that part of mathematics to be true.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 6.1)
     A reaction: Quine and Putnam hold this view; Field challenges it. It has the odd consequence that the dispensable parts (if they can be identified!) do not need to be treated as true (even though they might follow logically from the dispensable parts!). Wrong!
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Treating numbers adjectivally is treating them as quantifiers [Wright,C]
     Full Idea: Treating numbers adjectivally is, in effect, treating the numbers as quantifiers. Frege observes that we can always parse out any apparently adjectival use of a number word in terms of substantival use.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iii)
     A reaction: The immediate response to this is that any substantival use can equally be expressed adjectivally. If you say 'the number of moons of Jupiter is four', I can reply 'oh, you mean Jupiter has four moons'.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
The Peano Axioms, and infinity of cardinal numbers, are logical consequences of how we explain cardinals [Wright,C]
     Full Idea: The Peano Axioms are logical consequences of a statement constituting the core of an explanation of the notion of cardinal number. The infinity of cardinal numbers emerges as a consequence of the way cardinal number is explained.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xix)
     A reaction: This, along with Idea 13896, nicely summarises the neo-logicist project. I tend to favour a strategy which starts from ordering, rather than identities (1-1), but an attraction is that this approach is closer to counting objects in its basics.
The aim is to follow Frege's strategy to derive the Peano Axioms, but without invoking classes [Wright,C]
     Full Idea: We shall endeavour to see whether it is possible to follow through the strategy adumbrated in 'Grundlagen' for establishing the Peano Axioms without at any stage invoking classes.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xvi)
     A reaction: The key idea of neo-logicism. If you can avoid classes entirely, then set theory paradoxes become irrelevant, and classes aren't logic. Philosophers now try to derive the Peano Axioms from all sorts of things. Wright admits infinity is a problem.
Wright has revived Frege's discredited logicism [Wright,C, by Benardete,JA]
     Full Idea: Crispin Wright has reactivated Frege's logistic program, which for decades just about everybody assumed was a lost cause.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by José A. Benardete - Logic and Ontology 3
     A reaction: [This opens Bernadete's section called "Back to Strong Logicism?"]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seemed to fail by Russell's paradox, Gödel's theorems, and non-logical axioms [Wright,C]
     Full Idea: Most would cite Russell's paradox, the non-logical character of the axioms which Russell and Whitehead's reconstruction of Frege's enterprise was constrained to employ, and the incompleteness theorems of Gödel, as decisive for logicism's failure.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
The standard objections are Russell's Paradox, non-logical axioms, and Gödel's theorems [Wright,C]
     Full Idea: The general view is that Russell's Paradox put paid to Frege's logicist attempt, and Russell's own attempt is vitiated by the non-logical character of his axioms (esp. Infinity), and by the incompleteness theorems of Gödel. But these are bad reasons.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xvi)
     A reaction: Wright's work is the famous modern attempt to reestablish logicism, in the face of these objections.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism is unconstrained, so cannot indicate importance, or directions for research [Friend]
     Full Idea: There are not enough constraints in the Formalist view of mathematics, so there is no way to select a direction for trying to develop mathematics. There is no part of mathematics that is more important than another.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 6.6)
     A reaction: One might reply that an area of maths could be 'important' if lots of other areas depended on it, and big developments would ripple big changes through the interior of the subject. Formalism does, though, seem to reduce maths to a game.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Constructivism rejects too much mathematics [Friend]
     Full Idea: Too much of mathematics is rejected by the constructivist.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.1)
     A reaction: This was Hilbert's view. This seems to be generally true of verificationism. My favourite example is that legitimate speculations can be labelled as meaningless.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionists typically retain bivalence but reject the law of excluded middle [Friend]
     Full Idea: An intuitionist typically retains bivalence, but rejects the law of excluded middle.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 5.2)
     A reaction: The idea would be to say that only T and F are available as truth-values, but failing to be T does not ensure being F, but merely not-T. 'Unproven' is not-T, but may not be F.
7. Existence / A. Nature of Existence / 2. Types of Existence
The idea that 'exist' has multiple senses is not coherent [Wright,C]
     Full Idea: I have the gravest doubts whether any coherent account could be given of any multiplicity of senses of 'exist'.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 2.x)
     A reaction: I thoroughly agree with this thought. Do water and wind exist in different senses of 'exist'?
7. Existence / C. Structure of Existence / 3. Levels of Reality
A necessary relation between fact-levels seems to be a further irreducible fact [Lynch/Glasgow]
     Full Idea: It seems unavoidable that the facts about logically necessary relations between levels of facts are themselves logically distinct further facts, irreducible to the microphysical facts.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], C)
     A reaction: I'm beginning to think that rejecting every theory of reality that is proposed by carefully exposing some infinite regress hidden in it is a rather lazy way to do philosophy. Almost as bad as rejecting anything if it can't be defined.
7. Existence / C. Structure of Existence / 5. Supervenience / c. Significance of supervenience
If some facts 'logically supervene' on some others, they just redescribe them, adding nothing [Lynch/Glasgow]
     Full Idea: Logical supervenience, restricted to individuals, seems to imply strong reduction. It is said that where the B-facts logically supervene on the A-facts, the B-facts simply re-describe what the A-facts describe, and the B-facts come along 'for free'.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], C)
     A reaction: This seems to be taking 'logically' to mean 'analytically'. Presumably an entailment is logically supervenient on its premisses, and may therefore be very revealing, even if some people think such things are analytic.
7. Existence / D. Theories of Reality / 6. Physicalism
Nonreductive materialism says upper 'levels' depend on lower, but don't 'reduce' [Lynch/Glasgow]
     Full Idea: The root intuition behind nonreductive materialism is that reality is composed of ontologically distinct layers or levels. …The upper levels depend on the physical without reducing to it.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], B)
     A reaction: A nice clear statement of a view which I take to be false. This relationship is the sort of thing that drives people fishing for an account of it to use the word 'supervenience', which just says two things seem to hang out together. Fluffy materialism.
The hallmark of physicalism is that each causal power has a base causal power under it [Lynch/Glasgow]
     Full Idea: Jessica Wilson (1999) says what makes physicalist accounts different from emergentism etc. is that each individual causal power associated with a supervenient property is numerically identical with a causal power associated with its base property.
     From: Lynch,MP/Glasgow,JM (The Impossibility of Superdupervenience [2003], n 11)
     A reaction: Hence the key thought in so-called (serious, rather than self-evident) 'emergentism' is so-called 'downward causation', which I take to be an idle daydream.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
Singular terms in true sentences must refer to objects; there is no further question about their existence [Wright,C]
     Full Idea: When a class of terms functions as singular terms, and the sentences are true, then those terms genuinely refer. Being singular terms, their reference is to objects. There is no further question whether they really refer, and there are such objects.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iii)
     A reaction: This seems to be a key sentence, because this whole view is standardly called 'platonic', but it certainly isn't platonism as we know it, Jim. Ontology has become an entirely linguistic matter, but do we then have 'sakes' and 'whereaboutses'?
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
Structuralists call a mathematical 'object' simply a 'place in a structure' [Friend]
     Full Idea: What the mathematician labels an 'object' in her discipline, is called 'a place in a structure' by the structuralist.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 4.5)
     A reaction: This is a strategy for dispersing the idea of an object in the world of thought, parallel to attempts to eliminate them from physical ontology (e.g. Idea 614).
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Contextually defined abstract terms genuinely refer to objects [Wright,C, by Dummett]
     Full Idea: Wright says we should accord to contextually defined abstract terms a genuine full-blown reference to objects.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michael Dummett - Frege philosophy of mathematics Ch.18
     A reaction: This is the punch line of Wright's neo-logicist programme. See Idea 9868 for his view of reference. Dummett regards this strong view of contextual definition as 'exorbitant'. Wright's view strikes me as blatantly false.
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Sortal concepts cannot require that things don't survive their loss, because of phase sortals [Wright,C]
     Full Idea: The claim that no concept counts as sortal if an instance of it can survive its loss, runs foul of so-called phase sortals like 'embryo' and 'chrysalis'.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: The point being that those items only fall under that sortal for one phase of their career, and of their identity. I've always thought such claims absurd, and this gives a good reason for my view.
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity involves a decision about usage, and is non-realist and non-cognitive [Wright,C, by McFetridge]
     Full Idea: Wright espouses a non-realist, indeed non-cognitive account of logical necessity. Crucial to this is the idea that acceptance of a statement as necessary always involves an element of decision (to use it in a necessary way).
     From: report of Crispin Wright (Inventing Logical Necessity [1986]) by Ian McFetridge - Logical Necessity: Some Issues §3
     A reaction: This has little appeal to me, as I take (unfashionably) the view that that logical necessity is rooted in the behaviour of the actual physical world, with which you can't argue. We test simple logic by making up examples.
17. Mind and Body / E. Mind as Physical / 2. Reduction of Mind
Studying biology presumes the laws of chemistry, and it could never contradict them [Friend]
     Full Idea: In the hierarchy of reduction, when we investigate questions in biology, we have to assume the laws of chemistry but not of economics. We could never find a law of biology that contradicted something in physics or in chemistry.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.1)
     A reaction: This spells out the idea that there is a direction of dependence between aspects of the world, though we should be cautious of talking about 'levels' (see Idea 7003). We cannot choose the direction in which reduction must go.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
A concept is only a sortal if it gives genuine identity [Wright,C]
     Full Idea: Before we can conclude that φ expresses a sortal concept, we need to ensure that 'is the same φ as' generates statements of genuine identity rather than of some other equivalence relation.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
'Sortal' concepts show kinds, use indefinite articles, and require grasping identities [Wright,C]
     Full Idea: A concept is 'sortal' if it exemplifies a kind of object. ..In English predication of a sortal concept needs an indefinite article ('an' elm). ..What really constitutes the distinction is that it involves grasping identity for things which fall under it.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: This is a key notion, which underlies the claims of 'sortal essentialism' (see David Wiggins).
Concepts can be presented extensionally (as objects) or intensionally (as a characterization) [Friend]
     Full Idea: The extensional presentation of a concept is just a list of the objects falling under the concept. In contrast, an intensional presentation of a concept gives a characterization of the concept, which allows us to pick out which objects fall under it.
     From: Michèle Friend (Introducing the Philosophy of Mathematics [2007], 3.4)
     A reaction: Logicians seem to favour the extensional view, because (in the standard view) sets are defined simply by their members, so concepts can be explained using sets. I take this to be a mistake. The intensional view seems obviously prior.
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
Entities fall under a sortal concept if they can be used to explain identity statements concerning them [Wright,C]
     Full Idea: 'Tree' is not a sortal concept under which directions fall since we cannot adequately explain the truth-conditions of any identity statement involving a pair of tree-denoting singular terms by appealing to facts to do with parallelism between lines.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xiv)
     A reaction: The idea seems to be that these two fall under 'hedgehog', because that is a respect in which they are identical. I like to notion of explanation as a part of this.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
If we can establish directions from lines and parallelism, we were already committed to directions [Wright,C]
     Full Idea: The fact that it seems possible to establish a sortal notion of direction by reference to lines and parallelism, discloses tacit commitments to directions in statements about parallelism...There is incoherence in the idea that a line might lack direction.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xviii)
     A reaction: This seems like a slippery slope into a very extravagant platonism about concepts. Are concepts like direction as much a part of the natural world as rivers are? What other undiscovered concepts await us?
19. Language / A. Nature of Meaning / 5. Meaning as Verification
A milder claim is that understanding requires some evidence of that understanding [Wright,C]
     Full Idea: A mild version of the verification principle would say that it makes sense to think of someone as understanding an expression only if he is able, by his use of the expression, to give the best possible evidence that he understands it.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.vii)
     A reaction: That doesn't seem to tell us what understanding actually consists of, and may just be the truism that to demonstrate anything whatsoever will necessarily involve some evidence.
19. Language / A. Nature of Meaning / 7. Meaning Holism / b. Language holism
Holism cannot give a coherent account of scientific methodology [Wright,C, by Miller,A]
     Full Idea: Crispin Wright has argued that Quine's holism is implausible because it is actually incoherent: he claims that Quine's holism cannot provide us with a coherent account of scientific methodology.
     From: report of Crispin Wright (Inventing Logical Necessity [1986]) by Alexander Miller - Philosophy of Language 4.5
     A reaction: This sounds promising, given my intuitive aversion to linguistic holism, and almost everything to do with Quine. Scientific methodology is not isolated, but spreads into our ordinary (experimental) interactions with the world (e.g. Idea 2461).
19. Language / B. Reference / 1. Reference theories
If apparent reference can mislead, then so can apparent lack of reference [Wright,C]
     Full Idea: If the appearance of reference can be misleading, why cannot an apparent lack of reference be misleading?
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 2.xi)
     A reaction: A nice simple thought. Analytic philosophy has concerned itself a lot with sentences that seem to refer, but the reference can be analysed away. For me, this takes the question of reference out of the linguistic sphere, which wasn't Wright's plan.
19. Language / C. Assigning Meanings / 3. Predicates
We can accept Frege's idea of object without assuming that predicates have a reference [Wright,C]
     Full Idea: The heart of the problem is Frege's assumption that predicates have Bedeutungen at all; and no reason is at present evident why someone who espouses Frege's notion of object is contrained to make that assumption.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iv)
     A reaction: This seems like a penetrating objection to Frege's view of reference, and presumably supports the Kripke approach.