Combining Philosophers

All the ideas for M Fitting/R Mendelsohn, Anon (Upan) and David Bostock

unexpand these ideas     |    start again     |     specify just one area for these philosophers


183 ideas

2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are wrong, because they change the set that is being defined? [Bostock]
     Full Idea: Poincaré suggested that what is wrong with an impredicative definition is that it allows the set defined to alter its composition as more sets are added to the theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
     Full Idea: Venn Diagrams are a traditional method to test validity of syllogisms. There are three interlocking circles, one for each predicate, thus dividing the universe into eight possible basic elementary quantifications. Is the conclusion in a compartment?
     From: David Bostock (Intermediate Logic [1997], 3.8)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
     Full Idea: 'Disjunctive Normal Form' (DNF) is rearranging the occurrences of ∧ and ∨ so that no conjunction sign has any disjunction in its scope. This is achieved by applying two of the distribution laws.
     From: David Bostock (Intermediate Logic [1997], 2.6)
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
     Full Idea: 'Conjunctive Normal Form' (CNF) is rearranging the occurrences of ∧ and ∨ so that no disjunction sign has any conjunction in its scope. This is achieved by applying two of the distribution laws.
     From: David Bostock (Intermediate Logic [1997], 2.6)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
     Full Idea: The Principle of Disjunction says that Γ,φ∨ψ |= iff Γ,φ |= and Γ,ψ |=.
     From: David Bostock (Intermediate Logic [1997], 2.5.G)
     A reaction: That is, a disjunction leads to a contradiction if they each separately lead to contradictions.
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
     Full Idea: The Principle of Assumptions says that any formula entails itself, i.e. φ |= φ. The principle depends just upon the fact that no interpretation assigns both T and F to the same formula.
     From: David Bostock (Intermediate Logic [1997], 2.5.A)
     A reaction: Thus one can introduce φ |= φ into any proof, and then use it to build more complex sequents needed to attain a particular target formula. Bostock's principle is more general than anything in Lemmon.
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
     Full Idea: The Principle of Thinning says that if a set of premisses entails a conclusion, then adding further premisses will still entail the conclusion. It is 'thinning' because it makes a weaker claim. If γ|=φ then γ,ψ|= φ.
     From: David Bostock (Intermediate Logic [1997], 2.5.B)
     A reaction: It is also called 'premise-packing'. It is the characteristic of a 'monotonic' logic - where once something is proved, it stays proved, whatever else is introduced.
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
     Full Idea: The Conditional Principle says that Γ |= φ→ψ iff Γ,φ |= ψ. With the addition of negation, this implies φ,φ→ψ |= ψ, which is 'modus ponens'.
     From: David Bostock (Intermediate Logic [1997], 2.5.H)
     A reaction: [Second half is in Ex. 2.5.4]
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
     Full Idea: The Principle of Cutting is the general point that entailment is transitive, extending this to cover entailments with more than one premiss. Thus if γ |= φ and φ,Δ |= ψ then γ,Δ |= ψ. Here φ has been 'cut out'.
     From: David Bostock (Intermediate Logic [1997], 2.5.C)
     A reaction: It might be called the Principle of Shortcutting, since you can get straight to the last conclusion, eliminating the intermediate step.
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
     Full Idea: The Principle of Negation says that Γ,¬φ |= iff Γ |= φ. We also say that φ,¬φ |=, and hence by 'thinning on the right' that φ,¬φ |= ψ, which is 'ex falso quodlibet'.
     From: David Bostock (Intermediate Logic [1997], 2.5.E)
     A reaction: That is, roughly, if the formula gives consistency, the negation gives contradiction. 'Ex falso' says that anything will follow from a contradiction.
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
     Full Idea: The Principle of Conjunction says that Γ |= φ∧ψ iff Γ |= φ and Γ |= ψ. This implies φ,ψ |= φ∧ψ, which is ∧-introduction. It is also implies ∧-elimination.
     From: David Bostock (Intermediate Logic [1997], 2.5.F)
     A reaction: [Second half is Ex. 2.5.3] That is, if they are entailed separately, they are entailed as a unit. It is a moot point whether these principles are theorems of propositional logic, or derivation rules.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
     Full Idea: For ¬,→ Schemas: (A1) |-φ→(ψ→φ), (A2) |-(φ→(ψ→ξ)) → ((φ→ψ)→(φ→ξ)), (A3) |-(¬φ→¬ψ) → (ψ→φ), Rule:DET:|-φ,|-φ→ψ then |-ψ
     From: David Bostock (Intermediate Logic [1997], 5.2)
     A reaction: A1 says everything implies a truth, A2 is conditional proof, and A3 is contraposition. DET is modus ponens. This is Bostock's compact near-minimal axiom system for proposition logic. He adds two axioms and another rule for predicate logic.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Each line of a truth table is a model [Fitting/Mendelsohn]
     Full Idea: Each line of a truth table is, in effect, a model.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
     A reaction: I find this comment illuminating. It is being connected with the more complex models of modal logic. Each line of a truth table is a picture of how the world might be.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / a. Symbols of ML
Modal logic adds □ (necessarily) and ◊ (possibly) to classical logic [Fitting/Mendelsohn]
     Full Idea: For modal logic we add to the syntax of classical logic two new unary operators □ (necessarily) and ◊ (possibly).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.3)
We let 'R' be the accessibility relation: xRy is read 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: We let 'R' be the accessibility relation: xRy is read 'y is accessible from x'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
The symbol ||- is the 'forcing' relation; 'Γ ||- P' means that P is true in world Γ [Fitting/Mendelsohn]
     Full Idea: The symbol ||- is used for the 'forcing' relation, as in 'Γ ||- P', which means that P is true in world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
The prefix σ names a possible world, and σ.n names a world accessible from that one [Fitting/Mendelsohn]
     Full Idea: A 'prefix' is a finite sequence of positive integers. A 'prefixed formula' is an expression of the form σ X, where σ is a prefix and X is a formula. A prefix names a possible world, and σ.n names a world accessible from that one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / b. Terminology of ML
A 'constant' domain is the same for all worlds; 'varying' domains can be entirely separate [Fitting/Mendelsohn]
     Full Idea: In 'constant domain' semantics, the domain of each possible world is the same as every other; in 'varying domain' semantics, the domains need not coincide, or even overlap.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
Modern modal logic introduces 'accessibility', saying xRy means 'y is accessible from x' [Fitting/Mendelsohn]
     Full Idea: Modern modal logic takes into consideration the way the modal relates the possible worlds, called the 'accessibility' relation. .. We let R be the accessibility relation, and xRy reads as 'y is accessible from x.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.5)
     A reaction: There are various types of accessibility, and these define the various modal logics.
A 'model' is a frame plus specification of propositions true at worlds, written < G,R,||- > [Fitting/Mendelsohn]
     Full Idea: A 'model' is a frame plus a specification of which propositional letters are true at which worlds. It is written as , where ||- is a relation between possible worlds and propositional letters. So Γ ||- P means P is true at world Γ.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
A 'frame' is a set G of possible worlds, with an accessibility relation R, written < G,R > [Fitting/Mendelsohn]
     Full Idea: A 'frame' consists of a non-empty set G, whose members are generally called possible worlds, and a binary relation R, on G, generally called the accessibility relation. We say the frame is the pair so that a single object can be talked about.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Accessibility relations can be 'reflexive' (self-referring), 'transitive' (carries over), or 'symmetric' (mutual) [Fitting/Mendelsohn]
     Full Idea: A relation R is 'reflexive' if every world is accessible from itself; 'transitive' if the first world is related to the third world (ΓRΔ and ΔRΩ → ΓRΩ); and 'symmetric' if the accessibility relation is mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.7)
     A reaction: The different systems of modal logic largely depend on how these accessibility relations are specified. There is also the 'serial' relation, which just says that any world has another world accessible to it.
4. Formal Logic / D. Modal Logic ML / 2. Tools of Modal Logic / c. Derivation rules of ML
S5: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X [Fitting/Mendelsohn]
     Full Idea: Simplified S5 rules: a) if n ◊X then kX b) if n ¬□X then k ¬X c) if n □X then k X d) if n ¬◊X then k ¬X. 'n' picks any world; in a) and b) 'k' asserts a new world; in c) and d) 'k' refers to a known world
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
If a proposition is possibly true in a world, it is true in some world accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is possibly true in a world, then it is also true in some world which is accessible from that world. That is: Γ ||- ◊X ↔ for some Δ ∈ G, ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
If a proposition is necessarily true in a world, it is true in all worlds accessible from that world [Fitting/Mendelsohn]
     Full Idea: If a proposition is necessarily true in a world, then it is also true in all worlds which are accessible from that world. That is: Γ ||- □X ↔ for every Δ ∈ G, if ΓRΔ then Δ ||- X.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.6)
Conj: a) if σ X∧Y then σ X and σ Y b) if σ ¬(X∧Y) then σ ¬X or σ ¬Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for conjunctions: a) if σ X ∧ Y then σ X and σ Y b) if σ ¬(X ∧ Y) then σ ¬X or σ ¬Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Bicon: a)if σ(X↔Y) then σ(X→Y) and σ(Y→X) b) [not biconditional, one or other fails] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for biconditionals: a) if σ (X ↔ Y) then σ (X → Y) and σ (Y → X) b) if σ ¬(X ↔ Y) then σ ¬(X → Y) or σ ¬(Y → X)
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Implic: a) if σ ¬(X→Y) then σ X and σ ¬Y b) if σ X→Y then σ ¬X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for implications: a) if σ ¬(X → Y) then σ X and σ ¬Y b) if σ X → Y then σ ¬X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Universal: a) if σ ¬◊X then σ.m ¬X b) if σ □X then σ.m X [m exists] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for universal modality: a) if σ ¬◊ X then σ.m ¬X b) if σ □ X then σ.m X , where m refers to a world that can be seen (rather than introducing a new world).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the universal rule of □, usually read as 'necessary', only refers to worlds which can already be seen, whereas possibility (◊) asserts some thing about a new as yet unseen world.
Negation: if σ ¬¬X then σ X [Fitting/Mendelsohn]
     Full Idea: General tableau rule for negation: if σ ¬¬X then σ X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Disj: a) if σ ¬(X∨Y) then σ ¬X and σ ¬Y b) if σ X∨Y then σ X or σ Y [Fitting/Mendelsohn]
     Full Idea: General tableau rules for disjunctions: a) if σ ¬(X ∨ Y) then σ ¬X and σ ¬Y b) if σ X ∨ Y then σ X or σ Y
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
Existential: a) if σ ◊X then σ.n X b) if σ ¬□X then σ.n ¬X [n is new] [Fitting/Mendelsohn]
     Full Idea: General tableau rules for existential modality: a) if σ ◊ X then σ.n X b) if σ ¬□ X then σ.n ¬X , where n introduces some new world (rather than referring to a world that can be seen).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.2)
     A reaction: Note that the existential rule of ◊, usually read as 'possibly', asserts something about a new as yet unseen world, whereas □ only refers to worlds which can already be seen,
T reflexive: a) if σ □X then σ X b) if σ ¬◊X then σ ¬X [Fitting/Mendelsohn]
     Full Idea: System T reflexive rules (also for B, S4, S5): a) if σ □X then σ X b) if σ ¬◊X then σ ¬X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
D serial: a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X [Fitting/Mendelsohn]
     Full Idea: System D serial rules (also for T, B, S4, S5): a) if σ □X then σ ◊X b) if σ ¬◊X then σ ¬□X
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
B symmetric: a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System B symmetric rules (also for S5): a) if σ.n □X then σ X b) if σ.n ¬◊X then σ ¬X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4 transitive: a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4 transitive rules (also for K4, S4, S5): a) if σ □X then σ.n □X b) if σ ¬◊X then σ.n ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4r rev-trans: a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [n occurs] [Fitting/Mendelsohn]
     Full Idea: System 4r reversed-transitive rules (also for S5): a) if σ.n □X then σ □X b) if σ.n ¬◊X then σ ¬◊X [where n is a world which already occurs]
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 2.3)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
The system K has no accessibility conditions [Fitting/Mendelsohn]
     Full Idea: The system K has no frame conditions imposed on its accessibility relation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: The system is named K in honour of Saul Kripke.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
□P → P is not valid in D (Deontic Logic), since an obligatory action may be not performed [Fitting/Mendelsohn]
     Full Idea: System D is usually thought of as Deontic Logic, concerning obligations and permissions. □P → P is not valid in D, since just because an action is obligatory, it does not follow that it is performed.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.12.2 Ex)
The system D has the 'serial' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system D has the 'serial' condition imposed on its accessibility relation - that is, every world must have some world which is accessible to it.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / d. System T
The system T has the 'reflexive' conditon imposed on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system T has the 'reflexive' condition imposed on its accessibility relation - that is, every world must be accessible to itself.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / e. System K4
The system K4 has the 'transitive' condition on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system K4 has the 'transitive' condition imposed on its accessibility relation - that is, if a relation holds between worlds 1 and 2 and worlds 2 and 3, it must hold between worlds 1 and 3. The relation carries over.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / f. System B
The system B has the 'reflexive' and 'symmetric' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system B has the 'reflexive' and 'symmetric' conditions imposed on its accessibility relation - that is, every world must be accessible to itself, and any relation between worlds must be mutual.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
The system S4 has the 'reflexive' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S4 has the 'reflexive' and 'transitive' conditions imposed on its accessibility relation - that is, every world is accessible to itself, and accessibility carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
System S5 has the 'reflexive', 'symmetric' and 'transitive' conditions on its accessibility relation [Fitting/Mendelsohn]
     Full Idea: The system S5 has the 'reflexive', 'symmetric' and 'transitive' conditions imposed on its accessibility relation - that is, every world is self-accessible, and accessibility is mutual, and it carries over a series of worlds.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.8)
     A reaction: S5 has total accessibility, and hence is the most powerful system (though it might be too powerful).
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modality affects content, because P→◊P is valid, but ◊P→P isn't [Fitting/Mendelsohn]
     Full Idea: P→◊P is usually considered to be valid, but its converse, ◊P→P is not, so (by Frege's own criterion) P and possibly-P differ in conceptual content, and there is no reason why logic should not be widened to accommodate this.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.2)
     A reaction: Frege had denied that modality affected the content of a proposition (1879:p.4). The observation here is the foundation for the need for a modal logic.
4. Formal Logic / D. Modal Logic ML / 5. Epistemic Logic
In epistemic logic knowers are logically omniscient, so they know that they know [Fitting/Mendelsohn]
     Full Idea: In epistemic logic the knower is treated as logically omniscient. This is puzzling because one then cannot know something and yet fail to know that one knows it (the Principle of Positive Introspection).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: This is nowadays known as the K-K Problem - to know, must you know that you know. Broadly, we find that externalists say you don't need to know that you know (so animals know things), but internalists say you do need to know that you know.
Read epistemic box as 'a knows/believes P' and diamond as 'for all a knows/believes, P' [Fitting/Mendelsohn]
     Full Idea: In epistemic logic we read Υ as 'KaP: a knows that P', and ◊ as 'PaP: it is possible, for all a knows, that P' (a is an individual). For belief we read them as 'BaP: a believes that P' and 'CaP: compatible with everything a believes that P'.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.11)
     A reaction: [scripted capitals and subscripts are involved] Hintikka 1962 is the source of this. Fitting and Mendelsohn prefer □ to read 'a is entitled to know P', rather than 'a knows that P'.
4. Formal Logic / D. Modal Logic ML / 6. Temporal Logic
F: will sometime, P: was sometime, G: will always, H: was always [Fitting/Mendelsohn]
     Full Idea: We introduce four future and past tense operators: FP: it will sometime be the case that P. PP: it was sometime the case that P. GP: it will always be the case that P. HP: it has always been the case that P. (P itself is untensed).
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 1.10)
     A reaction: Temporal logic begins with A.N. Prior, and starts with □ as 'always', and ◊ as 'sometimes', but then adds these past and future divisions. Two different logics emerge, taking □ and ◊ as either past or as future.
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
The Barcan says nothing comes into existence; the Converse says nothing ceases; the pair imply stability [Fitting/Mendelsohn]
     Full Idea: The Converse Barcan says nothing passes out of existence in alternative situations. The Barcan says that nothing comes into existence. The two together say the same things exist no matter what the situation.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.9)
     A reaction: I take the big problem to be that these reflect what it is you want to say, and that does not keep stable across a conversation, so ordinary rational discussion sometimes asserts these formulas, and 30 seconds later denies them.
The Barcan corresponds to anti-monotonicity, and the Converse to monotonicity [Fitting/Mendelsohn]
     Full Idea: The Barcan formula corresponds to anti-monotonicity, and the Converse Barcan formula corresponds to monotonicity.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 6.3)
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
     Full Idea: None of the classical ways of defining one logical constant in terms of others is available in intuitionist logic (and this includes the two quantifiers).
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
     Full Idea: A 'free' logic is one in which names are permitted to be empty. A 'universally free' logic is one in which the domain of an interpretation may also be empty.
     From: David Bostock (Intermediate Logic [1997], 8.6)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
     Full Idea: There is so far no agreed set of axioms for set theory which is categorical, i.e. which does pick just one structure.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: This contrasts with Peano Arithmetic, which is categorical in its second-order version.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
     Full Idea: A 'proper class' cannot be a member of anything, neither of a set nor of another proper class.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
     Full Idea: We could add the axiom that all sets are constructible (V = L), making the universe of sets as small as possible, or add the axiom that there is a supercompact cardinal (SC), making the universe as large as we no know how to.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: Bostock says most mathematicians reject the first option, and are undecided about the second option.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
     Full Idea: The usual accounts of ZF are not restricted to subsets that we can describe, and that is what justifies the axiom of choice.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4 n36)
     A reaction: This contrasts interestingly with predicativism, which says we can only discuss things which we can describe or define. Something like verificationism hovers in the background.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
     Full Idea: The Axiom of Replacement (or the Axiom of Subsets, 'Aussonderung', Fraenkel 1922) in effect enforces the idea that 'limitation of size' is a crucial factor when deciding whether a proposed set or does not not exist.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is not decidable: there is no test of whether any formula is valid [Bostock]
     Full Idea: First-order logic is not decidable. That is, there is no test which can be applied to any arbitrary formula of that logic and which will tell one whether the formula is or is not valid (as proved by Church in 1936).
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
The completeness of first-order logic implies its compactness [Bostock]
     Full Idea: From the fact that the usual rules for first-level logic are complete (as proved by Gödel 1930), it follows that this logic is 'compact'.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
     A reaction: The point is that the completeness requires finite proofs.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Truth is the basic notion in classical logic [Bostock]
     Full Idea: The most fundamental notion in classical logic is that of truth.
     From: David Bostock (Intermediate Logic [1997], 1.1)
     A reaction: The opening sentence of his book. Hence the first half of the book is about semantics, and only the second half deals with proof. Compare Idea 10282. The thought seems to be that you could leave out truth, but that makes logic pointless.
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
     Full Idea: In very general terms, we cannot express the distinction between what is finite and what is infinite without moving essentially beyond the resources available in elementary logic.
     From: David Bostock (Intermediate Logic [1997], 4.8)
     A reaction: This observation concludes a discussion of Compactness in logic.
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
     Full Idea: Discourse about fictional characters leads to a breakdown of elementary logic. We accept P or ¬P if the relevant story says so, but P∨¬P will not be true if the relevant story says nothing either way, and P∧¬P is true if the story is inconsistent.
     From: David Bostock (Intermediate Logic [1997], 8.5)
     A reaction: I really like this. Does one need to invent a completely new logic for fictional characters? Or must their logic be intuitionist, or paraconsistent, or both?
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
     Full Idea: The syntactic turnstile |- φ means 'There is a proof of φ' (in the system currently being considered). Another way of saying the same thing is 'φ is a theorem'.
     From: David Bostock (Intermediate Logic [1997], 5.1)
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Validity is a conclusion following for premises, even if there is no proof [Bostock]
     Full Idea: The classical definition of validity counts an argument as valid if and only if the conclusion does in fact follow from the premises, whether or not the argument contains any demonstration of this fact.
     From: David Bostock (Intermediate Logic [1997], 1.2)
     A reaction: Hence validity is given by |= rather than by |-. A common example is 'it is red so it is coloured', which seems true but beyond proof. In the absence of formal proof, you wonder whether validity is merely a psychological notion.
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
     Full Idea: In practice we avoid quotation marks and explicitly set-theoretic notation that explaining |= as 'entails' appears to demand. Hence it seems more natural to explain |= as simply representing the word 'therefore'.
     From: David Bostock (Intermediate Logic [1997], 1.3)
     A reaction: Not sure I quite understand that, but I have trained myself to say 'therefore' for the generic use of |=. In other consequences it seems better to read it as 'semantic consequence', to distinguish it from |-.
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
     Full Idea: If we write Γ |= φ, with one formula to the right, then the turnstile abbreviates 'entails'. For a sequent of the form Γ |= it can be read as 'is inconsistent'. For |= φ we read it as 'valid'.
     From: David Bostock (Intermediate Logic [1997], 1.3)
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
     Full Idea: The Rule of Detachment is a version of Modus Ponens, and says 'If |=φ and |=φ→ψ then |=ψ'. This has no assumptions. Modus Ponens is the more general rule that 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: Modus Ponens is actually designed for use in proof based on assumptions (which isn't always the case). In Detachment the formulae are just valid, without dependence on assumptions to support them.
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
     Full Idea: Modus Ponens is equivalent to the converse of the Deduction Theorem, namely 'If Γ |- φ→ψ then Γ,φ|-ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: See 13615 for details of the Deduction Theorem. See 13614 for Modus Ponens.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
     Full Idea: We usually take these two principles together as the basic principles of identity: |= α=α and α=β |= φ(α/ξ) ↔ φ(β/ξ). The second (with scant regard for history) is known as Leibniz's Law.
     From: David Bostock (Intermediate Logic [1997], 8.1)
If we are to express that there at least two things, we need identity [Bostock]
     Full Idea: To say that there is at least one thing x such that Fx we need only use an existential quantifier, but to say that there are at least two things we need identity as well.
     From: David Bostock (Intermediate Logic [1997], 8.1)
     A reaction: The only clear account I've found of why logic may need to be 'with identity'. Without it, you can only reason about one thing or all things. Presumably plural quantification no longer requires '='?
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
     Full Idea: We shall use 'a=b' as short for 'a is the same thing as b'. The sign '=' thus expresses a particular two-place predicate. Officially we will use 'I' as the identity predicate, so that 'Iab' is as formula, but we normally 'abbreviate' this to 'a=b'.
     From: David Bostock (Intermediate Logic [1997], 8.1)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
     Full Idea: The usual view of the meaning of truth-functors is that each is defined by its own truth-table, independently of any other truth-functor.
     From: David Bostock (Intermediate Logic [1997], 2.7)
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
     Full Idea: We can talk of a 'zero-place' function, which is a new-fangled name for a familiar item; it just has a single value, and so it has the same role as a name.
     From: David Bostock (Intermediate Logic [1997], 8.2)
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
     Full Idea: Usually we allow that a function is defined for arguments of a suitable kind (a 'partial' function), but we can say that each function has one value for any object whatever, from the whole domain that our quantifiers range over (a 'total' function).
     From: David Bostock (Intermediate Logic [1997], 8.2)
     A reaction: He points out (p.338) that 'the father of..' is a functional expression, but it wouldn't normally take stones as input, so seems to be a partial function. But then it doesn't even take all male humans either. It only takes fathers!
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
     Full Idea: The important thing about a name, for logical purposes, is that it is used to make a singular reference to a particular object; ..we say that any expression too may be counted as a name, for our purposes, it it too performs the same job.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: He cites definite descriptions as the most notoriously difficult case, in deciding whether or not they function as names. I takes it as pretty obvious that sometimes they do and sometimes they don't (in ordinary usage).
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
     Full Idea: An expression is not counted as a name unless it succeeds in referring to an object, i.e. unless there really is an object to which it refers.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: His 'i.e.' makes the existence condition sound sufficient, but in ordinary language you don't succeed in referring to 'that man over there' just because he exists. In modal contexts we presumably refer to hypothetical objects (pace Lewis).
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
     Full Idea: It is natural to suppose one only uses a definite description when one believes it describes only one thing, but exceptions are 'there is no such thing as the greatest prime number', or saying something false where the reference doesn't occur.
     From: David Bostock (Intermediate Logic [1997], 8.3)
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
     Full Idea: Although a definite description looks like a complex name, and in many ways behaves like a name, still it cannot be a name if names must always refer to objects. Russell gave the first proposal for handling such expressions.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: I take the simple solution to be a pragmatic one, as roughly shown by Donnellan, that sometimes they are used exactly like names, and sometimes as something else. The same phrase can have both roles. Confusing for logicians. Tough.
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
     Full Idea: Because of the scope problem, it now seems better to 'parse' definition descriptions not as names but as quantifiers. 'The' is to be treated in the same category as acknowledged quantifiers like 'all' and 'some'. We write Ix - 'for the x such that..'.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: This seems intuitively rather good, since quantification in normal speech is much more sophisticated than the crude quantification of classical logic. But the fact is that they often function as names (but see Idea 13817).
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
     Full Idea: In practice, definite descriptions are for the most part treated as names, since this is by far the most convenient notation (even though they have scope). ..When a description is uniquely satisfied then it does behave like a name.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: Apparent names themselves have problems when they wander away from uniquely picking out one thing, as in 'John Doe'.
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
     Full Idea: If it is really true that definite descriptions have scopes whereas names do not, then Russell must be right to claim that definite descriptions are not names. If, however, this is not true, then it does no harm to treat descriptions as complex names.
     From: David Bostock (Intermediate Logic [1997], 8.8)
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
     Full Idea: In orthodox logic names are not regarded as having scope (for example, in where a negation is placed), whereas on Russell's theory definite descriptions certainly do. Russell had his own way of dealing with this.
     From: David Bostock (Intermediate Logic [1997], 8.3)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
'Predicate abstraction' abstracts predicates from formulae, giving scope for constants and functions [Fitting/Mendelsohn]
     Full Idea: 'Predicate abstraction' is a key idea. It is a syntactic mechanism for abstracting a predicate from a formula, providing a scoping mechanism for constants and function symbols similar to that provided for variables by quantifiers.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], Pref)
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
     Full Idea: A formula is said to be in 'prenex normal form' (PNF) iff all its quantifiers occur in a block at the beginning, so that no quantifier is in the scope of any truth-functor.
     From: David Bostock (Intermediate Logic [1997], 3.7)
     A reaction: Bostock provides six equivalences which can be applied to manouevre any formula into prenex normal form. He proves that every formula can be arranged in PNF.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
     Full Idea: We can show that if empty domains are permitted, then empty names must be permitted too.
     From: David Bostock (Intermediate Logic [1997], 8.4)
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is just standard if all objects in the domain have a name [Bostock]
     Full Idea: Substitutional quantification and quantification understood in the usual 'ontological' way will coincide when every object in the (ontological) domain has a name.
     From: David Bostock (Philosophy of Mathematics [2009], 7.3 n23)
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
     Full Idea: An 'informal proof' is not in any particular proof system. One may use any rule of proof that is 'sufficiently obvious', and there is quite a lot of ordinary English in the proof, explaining what is going on at each step.
     From: David Bostock (Intermediate Logic [1997], 8.1)
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
     Full Idea: New axiom-schemas for quantifiers: (A4) |-∀ξφ → φ(α/ξ), (A5) |-∀ξ(ψ→φ) → (ψ→∀ξφ), plus the rule GEN: If |-φ the |-∀ξφ(ξ/α).
     From: David Bostock (Intermediate Logic [1997], 5.6)
     A reaction: This follows on from Idea 13610, where he laid out his three axioms and one rule for propositional (truth-functional) logic. This Idea plus 13610 make Bostock's proposed axiomatisation of first-order logic.
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
     Full Idea: Notably axiomatisations of first-order logic are by Frege (1879), Russell and Whitehead (1910), Church (1956), Lukasiewicz and Tarski (1930), Lukasiewicz (1936), Nicod (1917), Kleene (1952) and Quine (1951). Also Bostock (1997).
     From: David Bostock (Intermediate Logic [1997], 5.8)
     A reaction: My summary, from Bostock's appendix 5.8, which gives details of all of these nine systems. This nicely illustrates the status and nature of axiom systems, which have lost the absolute status they seemed to have in Euclid.
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
     Full Idea: If a group of formulae prove a conclusion, we can 'conditionalize' this into a chain of separate inferences, which leads to the Deduction Theorem (or Conditional Proof), that 'If Γ,φ|-ψ then Γ|-φ→ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: This is the rule CP (Conditional Proof) which can be found in the rules for propositional logic I transcribed from Lemmon's book.
The Deduction Theorem greatly simplifies the search for proof [Bostock]
     Full Idea: Use of the Deduction Theorem greatly simplifies the search for proof (or more strictly, the task of showing that there is a proof).
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: See 13615 for details of the Deduction Theorem. Bostock is referring to axiomatic proof, where it can be quite hard to decide which axioms are relevant. The Deduction Theorem enables the making of assumptions.
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
     Full Idea: By repeated transformations using the Deduction Theorem, any proof from assumptions can be transformed into a fully conditionalized proof, which is then an axiomatic proof.
     From: David Bostock (Intermediate Logic [1997], 5.6)
     A reaction: Since proof using assumptions is perhaps the most standard proof system (e.g. used in Lemmon, for many years the standard book at Oxford University), the Deduction Theorem is crucial for giving it solid foundations.
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
     Full Idea: Like the Deduction Theorem, one form of Reductio ad Absurdum (If Γ,φ|-[absurdity] then Γ|-¬φ) 'discharges' an assumption. Assume φ and obtain a contradiction, then we know ¬&phi, without assuming φ.
     From: David Bostock (Intermediate Logic [1997], 5.7)
     A reaction: Thus proofs from assumption either arrive at conditional truths, or at truths that are true irrespective of what was initially assumed.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
     Full Idea: Natural deduction takes the notion of proof from assumptions as a basic notion, ...so it will use rules for use in proofs from assumptions, and axioms (as traditionally understood) will have no role to play.
     From: David Bostock (Intermediate Logic [1997], 6.1)
     A reaction: The main rules are those for introduction and elimination of truth functors.
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
     Full Idea: Many books take RAA (reductio) and DNE (double neg) as the natural deduction introduction- and elimination-rules for negation, but RAA is not a natural introduction rule. I prefer TND (tertium) and EFQ (ex falso) for ¬-introduction and -elimination.
     From: David Bostock (Intermediate Logic [1997], 6.2)
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
     Full Idea: When looking for a proof of a sequent, the best we can do in natural deduction is to work simultaneously in both directions, forward from the premisses, and back from the conclusion, and hope they will meet in the middle.
     From: David Bostock (Intermediate Logic [1997], 6.5)
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
     Full Idea: Natural deduction adopts for → as rules the Deduction Theorem and Modus Ponens, here called →I and →E. If ψ follows φ in the proof, we can write φ→ψ (→I). φ and φ→ψ permit ψ (→E).
     From: David Bostock (Intermediate Logic [1997], 6.2)
     A reaction: Natural deduction has this neat and appealing way of formally introducing or eliminating each connective, so that you know where you are, and you know what each one means.
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
     Full Idea: The Deduction Theorem is what licenses a system of 'natural deduction' in the first place.
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
     Full Idea: With semantic tableaux there are recipes for proof-construction that we can operate, whereas with natural deduction there are not.
     From: David Bostock (Intermediate Logic [1997], 6.5)
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
     Full Idea: A tableau proof is a proof by reduction ad absurdum. One begins with an assumption, and one develops the consequences of that assumption, seeking to derive an impossible consequence.
     From: David Bostock (Intermediate Logic [1997], 4.1)
A completed open branch gives an interpretation which verifies those formulae [Bostock]
     Full Idea: An open branch in a completed tableau will always yield an interpretation that verifies every formula on the branch.
     From: David Bostock (Intermediate Logic [1997], 4.7)
     A reaction: In other words the open branch shows a model which seems to work (on the available information). Similarly a closed branch gives a model which won't work - a counterexample.
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
     Full Idea: Rules for semantic tableaus are of two kinds - non-branching rules and branching rules. The first allow the addition of further lines, and the second requires splitting the branch. A branch which assigns contradictory values to a formula is 'closed'.
     From: David Bostock (Intermediate Logic [1997], 4.1)
     A reaction: [compressed] Thus 'and' stays on one branch, asserting both formulae, but 'or' splits, checking first one and then the other. A proof succeeds when all the branches are closed, showing that the initial assumption leads only to contradictions.
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
     Full Idea: In a tableau system no sequent is established until the final step of the proof, when the last branch closes, and until then we are simply exploring a hypothesis.
     From: David Bostock (Intermediate Logic [1997], 7.3)
     A reaction: This compares sharply with a sequence calculus, where every single step is a conclusive proof of something. So use tableaux for exploring proofs, and then sequence calculi for writing them up?
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
     Full Idea: When the only rule of inference is Modus Ponens, the branches of a tree proof soon spread too wide for comfort.
     From: David Bostock (Intermediate Logic [1997], 6.4)
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
     Full Idea: In their original setting, all the tableau rules are elimination rules, allowing us to replace a longer formula by its shorter components.
     From: David Bostock (Intermediate Logic [1997], 7.3)
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
     Full Idea: A sequent calculus keeps an explicit record of just what sequent is established at each point in a proof. Every line is itself the sequent proved at that point. It is not a linear sequence or array of formulae, but a matching array of whole sequents.
     From: David Bostock (Intermediate Logic [1997], 7.1)
A sequent calculus is good for comparing proof systems [Bostock]
     Full Idea: A sequent calculus is a useful tool for comparing two systems that at first look utterly different (such as natural deduction and semantic tableaux).
     From: David Bostock (Intermediate Logic [1997], 7.2)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
     Full Idea: There are two approaches to an 'interpretation' of a logic: the first method assigns objects to names, and then defines connectives and quantifiers, focusing on truth; the second assigns objects to variables, then variables to names, using satisfaction.
     From: report of David Bostock (Intermediate Logic [1997], 3.4) by PG - Db (lexicon)
     A reaction: [a summary of nine elusive pages in Bostock] He says he prefers the first method, but the second method is more popular because it handles open formulas, by treating free variables as if they were names.
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
     Full Idea: Extensionality is built into the semantics of ordinary logic. When a name-letter is interpreted as denoting something, we just provide the object denoted. All that we provide for a one-place predicate-letter is the set of objects that it is true of..
     From: David Bostock (Intermediate Logic [1997])
     A reaction: Could we keep the syntax of ordinary logic, and provide a wildly different semantics, much closer to real life? We could give up these dreadful 'objects' that Frege lumbered us with. Logic for processes, etc.
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
     Full Idea: If two names refer to the same object, then in any proposition which contains either of them the other may be substituted in its place, and the truth-value of the proposition of the proposition will be unaltered. This is the Principle of Extensionality.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: He acknowledges that ordinary language is full of counterexamples, such as 'he doesn't know the Morning Star and the Evening Star are the same body' (when he presumably knows that the Morning Star is the Morning Star). This is logic. Like maths.
5. Theory of Logic / K. Features of Logics / 2. Consistency
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
     Full Idea: Any system of proof S is said to be 'negation-consistent' iff there is no formula such that |-(S)φ and |-(S)¬φ.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: Compare Idea 13542. This version seems to be a 'strong' version, as it demands a higher standard than 'absolute consistency'. Both halves of the condition would have to be established.
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
     Full Idea: Any system of proof S is said to be 'absolutely consistent' iff it is not the case that for every formula we have |-(S)φ.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: Bostock notes that a sound system will be both 'negation-consistent' (Idea 13541) and absolutely consistent. 'Tonk' systems can be shown to be unsound because the two come apart.
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
     Full Idea: 'Γ |=' means 'Γ is a set of closed formulae, and there is no (standard) interpretation in which all of the formulae in Γ are true'. We abbreviate this last to 'Γ is inconsistent'.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: This is a semantic approach to inconsistency, in terms of truth, as opposed to saying that we cannot prove both p and ¬p. I take this to be closer to the true concept, since you need never have heard of 'proof' to understand 'inconsistent'.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
     Full Idea: Being 'compact' means that if we have an inconsistency or an entailment which holds just because of the truth-functors and quantifiers involved, then it is always due to a finite number of the propositions in question.
     From: David Bostock (Intermediate Logic [1997], 4.8)
     A reaction: Bostock says this is surprising, given the examples 'a is not a parent of a parent of b...' etc, where an infinity seems to establish 'a is not an ancestor of b'. The point, though, is that this truth doesn't just depend on truth-functors and quantifiers.
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
     Full Idea: The logic of truth-functions is compact, which means that sequents with infinitely many formulae on the left introduce nothing new. Hence we can confine our attention to finite sequents.
     From: David Bostock (Intermediate Logic [1997], 5.5)
     A reaction: This makes it clear why compactness is a limitation in logic. If you want the logic to be unlimited in scope, it isn't; it only proves things from finite numbers of sequents. This makes it easier to prove completeness for the system.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox considers the meaning of 'The least number not named by this name' [Bostock]
     Full Idea: Berry's Paradox can be put in this form, by considering the alleged name 'The least number not named by this name'.
     From: David Bostock (Philosophy of Mathematics [2009], 8.1)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
     Full Idea: If you add to the ordinals you produce many different ordinals, each measuring the length of the sequence of ordinals less than it. They each have cardinality aleph-0. The cardinality eventually increases, but we can't say where this break comes.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
     Full Idea: If we add ω onto the end of 0,1,2,3,4..., it then has a different length, of ω+1. It has a different ordinal (since it can't be matched with its first part), but the same cardinal (since adding 1 makes no difference).
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: [compressed] The ordinals and cardinals coincide up to ω, but this is the point at which they come apart.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
     Full Idea: It is the usual procedure these days to identify a cardinal number with the earliest ordinal number that has that number of predecessors.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: This sounds circular, since you need to know the cardinal in order to decide which ordinal is the one you want, but, hey, what do I know?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Aleph-1 is the first ordinal that exceeds aleph-0 [Bostock]
     Full Idea: The cardinal aleph-1 is identified with the first ordinal to have more than aleph-0 members, and so on.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
     A reaction: That is, the succeeding infinite ordinals all have the same cardinal number of members (aleph-0), until the new total is triggered (at the number of the reals). This is Continuum Hypothesis territory.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
     Full Idea: In addition to cuts, or converging series, Cantor suggests we can simply lay down a set of axioms for the real numbers, and this can be done without any explicit mention of the rational numbers [note: the axioms are those for a complete ordered field].
     From: David Bostock (Philosophy of Mathematics [2009], 4.4)
     A reaction: It is interesting when axioms are best, and when not. Set theory depends entirely on axioms. Horsten and Halbach are now exploring treating truth as axiomatic. You don't give the 'nature' of the thing - just rules for its operation.
The number of reals is the number of subsets of the natural numbers [Bostock]
     Full Idea: It is not difficult to show that the number of the real numbers is the same as the number of all the subsets of the natural numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: The Continuum Hypothesis is that this is the next infinite number after the number of natural numbers. Why can't there be a number which is 'most' of the subsets of the natural numbers?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
For Eudoxus cuts in rationals are unique, but not every cut makes a real number [Bostock]
     Full Idea: As Eudoxus claimed, two distinct real numbers cannot both make the same cut in the rationals, for any two real numbers must be separated by a rational number. He did not say, though, that for every such cut there is a real number that makes it.
     From: David Bostock (Philosophy of Mathematics [2009], 4.4)
     A reaction: This is in Bostock's discussion of Dedekind's cuts. It seems that every cut is guaranteed to produce a real. Fine challenges the later assumption.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals are not actually contradictory, because they can be non-standard real numbers [Bostock]
     Full Idea: Non-standard natural numbers will yield non-standard rational and real numbers. These will include reciprocals which will be closer to 0 than any standard real number. These are like 'infinitesimals', so that notion is not actually a contradiction.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Modern axioms of geometry do not need the real numbers [Bostock]
     Full Idea: A modern axiomatisation of geometry, such as Hilbert's (1899), does not need to claim the existence of real numbers anywhere in its axioms.
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5.ii)
     A reaction: This is despite the fact that geometry is reduced to algebra, and the real numbers are the equivalent of continuous lines. Bostock votes for a Greek theory of proportion in this role.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The Peano Axioms describe a unique structure [Bostock]
     Full Idea: The Peano Axioms are categorical, meaning that they describe a unique structure.
     From: David Bostock (Philosophy of Mathematics [2009], 4.4 n20)
     A reaction: So if you think there is nothing more to the natural numbers than their structure, then the Peano Axioms give the essence of arithmetic. If you think that 'objects' must exist to generate a structure, there must be more to the numbers.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
     Full Idea: The principle of mathematical (or ordinary) induction says suppose the first number, 0, has a property; suppose that if any number has that property, then so does the next; then it follows that all numbers have the property.
     From: David Bostock (Intermediate Logic [1997], 2.8)
     A reaction: Ordinary induction is also known as 'weak' induction. Compare Idea 13359 for 'strong' or complete induction. The number sequence must have a first element, so this doesn't work for the integers.
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
     Full Idea: The principle of complete induction says suppose that for every number, if all the numbers less than it have a property, then so does it; it then follows that every number has the property.
     From: David Bostock (Intermediate Logic [1997], 2.8)
     A reaction: Complete induction is also known as 'strong' induction. Compare Idea 13358 for 'weak' or mathematical induction. The number sequence need have no first element.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Hume's Principle is a definition with existential claims, and won't explain numbers [Bostock]
     Full Idea: Hume's Principle will not do as an implicit definition because it makes a positive claim about the size of the universe (which no mere definition can do), and because it does not by itself explain what the numbers are.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
Many things will satisfy Hume's Principle, so there are many interpretations of it [Bostock]
     Full Idea: Hume's Principle gives a criterion of identity for numbers, but it is obvious that many other things satisfy that criterion. The simplest example is probably the numerals (in any notation, decimal, binary etc.), giving many different interpretations.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
There are many criteria for the identity of numbers [Bostock]
     Full Idea: There is not just one way of giving a criterion of identity for numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
     Full Idea: The Julius Caesar problem was one reason that led Frege to give an explicit definition of numbers as special sets. He does not appear to notice that the same problem affects his Axiom V for introducing sets (whether Caesar is or is not a set).
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: The Julius Caesar problem is a sceptical acid that eats into everything in philosophy of mathematics. You give all sorts of wonderful accounts of numbers, but at what point do you know that you now have a number, and not something else?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Numbers can't be positions, if nothing decides what position a given number has [Bostock]
     Full Idea: There is no ground for saying that a number IS a position, if the truth is that there is nothing to determine which number is which position.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: If numbers lose touch with the empirical ability to count physical objects, they drift off into a mad world where they crumble away.
Structuralism falsely assumes relations to other numbers are numbers' only properties [Bostock]
     Full Idea: Structuralism begins from a false premise, namely that numbers have no properties other than their relations to other numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 6.5)
     A reaction: Well said. Describing anything purely relationally strikes me as doomed, because you have to say why those things relate in those ways.
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalism about mathematics is either reductionist, or fictionalist [Bostock]
     Full Idea: Nominalism has two main versions, one which tries to 'reduce' the objects of mathematics to something simpler (Russell and Wittgenstein), and another which claims that such objects are mere 'fictions' which have no reality (Field).
     From: David Bostock (Philosophy of Mathematics [2009], 9)
Nominalism as based on application of numbers is no good, because there are too many applications [Bostock]
     Full Idea: The style of nominalism which aims to reduce statements about numbers to statements about their applications does not work for the natural numbers, because they have many applications, and it is arbitrary to choose just one of them.
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5.iii)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Actual measurement could never require the precision of the real numbers [Bostock]
     Full Idea: We all know that in practice no physical measurement can be 100 per cent accurate, and so it cannot require the existence of a genuinely irrational number, rather than some of the rational numbers close to it.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.3)
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Ordinals are mainly used adjectively, as in 'the first', 'the second'... [Bostock]
     Full Idea: The basic use of the ordinal numbers is their use as ordinal adjectives, in phrases such as 'the first', 'the second' and so on.
     From: David Bostock (Philosophy of Mathematics [2009], 9.5.iii)
     A reaction: That is because ordinals seem to attach to particulars, whereas cardinals seem to attach to groups. Then you say 'three is greater than four', it is not clear which type you are talking about.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Simple type theory has 'levels', but ramified type theory has 'orders' [Bostock]
     Full Idea: The simple theory of types distinguishes sets into different 'levels', but this is quite different from the distinction into 'orders' which is imposed by the ramified theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.1)
     A reaction: The ramified theory has both levels and orders (p.235). Russell's terminology is, apparently, inconsistent.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
     Full Idea: The neo-logicists take up Frege's claim that Hume's Principle introduces a new concept (of a number), but unlike Frege they go on to claim that it by itself gives a complete account of that concept.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: So the big difference between Frege and neo-logicists is the Julius Caesar problem.
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
     Full Idea: The response of neo-logicists to the Julius Caesar problem is to strengthen Hume's Principle in the hope of ensuring that only numbers will satisfy it. They say the criterion of identity provided by HP is essential to number, and not to anything else.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
If Hume's Principle is the whole story, that implies structuralism [Bostock]
     Full Idea: If Hume's Principle is all we are given, by way of explanation of what the numbers are, the only conclusion to draw would seem to be the structuralists' conclusion, ...studying all systems that satisfy that principle.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: Any approach that implies a set of matching interpretations will always imply structuralism. To avoid it, you need to pin the target down uniquely.
Many crucial logicist definitions are in fact impredicative [Bostock]
     Full Idea: Many of the crucial definitions in the logicist programme are in fact impredicative.
     From: David Bostock (Philosophy of Mathematics [2009], 8.2)
Treating numbers as objects doesn't seem like logic, since arithmetic fixes their totality [Bostock]
     Full Idea: If logic is neutral on the number of objects there are, then logicists can't construe numbers as objects, for arithmetic is certainly not neutral on the number of numbers there are. They must be treated in some other way, perhaps as numerical quantifiers.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Higher cardinalities in sets are just fairy stories [Bostock]
     Full Idea: In its higher reaches, which posit sets of huge cardinalities, set theory is just a fairy story.
     From: David Bostock (Philosophy of Mathematics [2009], 9.5.iii)
     A reaction: You can't say the higher reaches are fairy stories but the lower reaches aren't, if the higher is directly derived from the lower. The empty set and the singleton are fairy stories too. Bostock says the axiom of infinity triggers the fairy stories.
A fairy tale may give predictions, but only a true theory can give explanations [Bostock]
     Full Idea: A common view is that although a fairy tale may provide very useful predictions, it cannot provide explanations for why things happen as they do. In order to do that a theory must also be true (or, at least, an approximation to the truth).
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5)
     A reaction: Of course, fictionalism offers an explanation of mathematics as a whole, but not of the details (except as the implications of the initial fictional assumptions).
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
The best version of conceptualism is predicativism [Bostock]
     Full Idea: In my personal opinion, predicativism is the best version of conceptualism that we have yet discovered.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4)
     A reaction: Since conceptualism is a major player in the field, this makes predicativism a very important view. I won't vote Predicativist quite yet, but I'm tempted.
Conceptualism fails to grasp mathematical properties, infinity, and objective truth values [Bostock]
     Full Idea: Three simple objections to conceptualism in mathematics are that we do not ascribe mathematical properties to our ideas, that our ideas are presumably finite, and we don't think mathematics lacks truthvalue before we thought of it.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4)
     A reaction: [compressed; Bostock refers back to his Ch 2] Plus Idea 18134. On the whole I sympathise with conceptualism, so I will not allow myself to be impressed by any of these objections. (So, what's actually wrong with them.....?).
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
If abstracta only exist if they are expressible, there can only be denumerably many of them [Bostock]
     Full Idea: If an abstract object exists only when there is some suitable way of expressing it, then there are at most denumerably many abstract objects.
     From: David Bostock (Philosophy of Mathematics [2009], 8.2)
     A reaction: Fine by me. What an odd view, to think there are uncountably many abstract objects in existence, only a countable portion of which will ever be expressed! [ah! most people agree with me, p.243-4]
Predicativism makes theories of huge cardinals impossible [Bostock]
     Full Idea: Classical mathematicians say predicative mathematics omits areas of great interest, all concerning non-denumerable real numbers, such as claims about huge cardinals. There cannot be a predicative version of this theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: I'm not sure that anyone will really miss huge cardinals if they are prohibited, though cryptography seems to flirt with such things. Are we ever allowed to say that some entity conjured up by mathematicians is actually impossible?
If mathematics rests on science, predicativism may be the best approach [Bostock]
     Full Idea: It has been claimed that only predicative mathematics has a justification through its usefulness to science (an empiricist approach).
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: [compressed. Quine is the obvious candidate] I suppose predicativism gives your theory roots, whereas impredicativism is playing an abstract game.
If we can only think of what we can describe, predicativism may be implied [Bostock]
     Full Idea: If we accept the initial idea that we can think only of what we ourselves can describe, then something like the theory of predicativism quite naturally results
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: I hate the idea that we can only talk of what falls under a sortal, but 'what we can describe' is much more plausible. Whether or not you agree with this approach (I'm pondering it), this makes predicativism important.
The usual definitions of identity and of natural numbers are impredicative [Bostock]
     Full Idea: The predicative approach cannot accept either the usual definition of identity or the usual definition of the natural numbers, for both of these definitions are impredicative.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: [Bostock 237-8 gives details]
The predicativity restriction makes a difference with the real numbers [Bostock]
     Full Idea: It is with the real numbers that the restrictions imposed by predicativity begin to make a real difference.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
     Full Idea: A relation is 'one-many' if for anything on the right there is at most one on the left (∀xyz(Rxz∧Ryz→x=y), and is 'many-one' if for anything on the left there is at most one on the right (∀xyz(Rzx∧Rzy→x=y).
     From: David Bostock (Intermediate Logic [1997], 8.1)
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
     Full Idea: It is easy to fall into the error of supposing that a relation which is both transitive and symmetrical must also be reflexive.
     From: David Bostock (Intermediate Logic [1997], 4.7)
     A reaction: Compare Idea 14430! Transivity will take you there, and symmetricality will get you back, but that doesn't entitle you to take the shortcut?
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
     Full Idea: If even non-existent things are still counted as self-identical, then all non-existent things must be counted as identical with one another, so there is at most one non-existent thing. We might arbitrarily choose zero, or invent 'the null object'.
     From: David Bostock (Intermediate Logic [1997], 8.6)
9. Objects / F. Identity among Objects / 7. Indiscernible Objects
The Indiscernibility of Identicals has been a big problem for modal logic [Fitting/Mendelsohn]
     Full Idea: Equality has caused much grief for modal logic. Many of the problems, which have struck at the heart of the coherence of modal logic, stem from the apparent violations of the Indiscernibility of Identicals.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.1)
     A reaction: Thus when I say 'I might have been three inches taller', presumably I am referring to someone who is 'identical' to me, but who lacks one of my properties. A simple solution is to say that the person is 'essentially' identical.
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
     Full Idea: The common Rule of Necessitation says that what can be proved is necessary, but this is incorrect if we do not permit empty names. The most straightforward answer is to modify elementary logic so that only necessary truths can be proved.
     From: David Bostock (Intermediate Logic [1997], 8.4)
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
□ must be sensitive as to whether it picks out an object by essential or by contingent properties [Fitting/Mendelsohn]
     Full Idea: If □ is to be sensitive to the quality of the truth of a proposition in its scope, then it must be sensitive as to whether an object is picked out by an essential property or by a contingent one.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.3)
     A reaction: This incredibly simple idea strikes me as being powerful and important. ...However, creating illustrative examples leaves me in a state of confusion. You try it. They cite '9' and 'number of planets'. But is it just nominal essence? '9' must be 9.
Objects retain their possible properties across worlds, so a bundle theory of them seems best [Fitting/Mendelsohn]
     Full Idea: The property of 'possibly being a Republican' is as much a property of Bill Clinton as is 'being a democrat'. So we don't peel off his properties from world to world. Hence the bundle theory fits our treatment of objects better than bare particulars.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 7.3)
     A reaction: This bundle theory is better described in recent parlance as the 'modal profile'. I am reluctant to talk of a modal truth about something as one of its 'properties'. An objects, then, is a bundle of truths?
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
Counterpart relations are neither symmetric nor transitive, so there is no logic of equality for them [Fitting/Mendelsohn]
     Full Idea: The main technical problem with counterpart theory is that the being-a-counterpart relation is, in general, neither symmetric nor transitive, so no natural logic of equality is forthcoming.
     From: M Fitting/R Mendelsohn (First-Order Modal Logic [1998], 4.5)
     A reaction: That is, nothing is equal to a counterpart, either directly or indirectly.
16. Persons / A. Concept of a Person / 3. Persons as Reasoners
Self is the rider, intellect the charioteer, mind the reins, and body the chariot [Anon (Upan)]
     Full Idea: Know that the Self (Atman) is the rider, and the body the chariot; that the intellect is the charioteer, and the mind the reins.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Katha')
     A reaction: This strikes me as exactly right. Even my intellectual powers are servants of the self. This suggests the view of the mind as a tool, which does not seem to occur in modern discussions.
16. Persons / C. Self-Awareness / 2. Knowing the Self
We have an apparent and a true self; only the second one exists, and we must seek to know it [Anon (Upan)]
     Full Idea: There are two selves, the apparent self, and the real Self. Of these it is the real Self (Atman), and he alone, who must be felt as truly existing. To the man who has felt him as truly existing he reveals his innermost nature.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Katha')
     A reaction: A central Hindu doctrine against which Buddhism rebelled, by denying the self altogether. I prefer the Hindu view. A desire to abandon the self just seems to be a desire for death. Knowledge of our essential self is more interesting. But see Idea 2932!
18. Thought / D. Concepts / 5. Concepts and Language / a. Concepts and language
Without speech we cannot know right/wrong, true/false, good/bad, or pleasant/unpleasant [Anon (Upan)]
     Full Idea: If there were no speech, neither right nor wrong would be known, neither the true nor the false, neither the good nor the bad, neither the pleasant nor the unpleasant.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Chandogya')
     A reaction: This could stand as the epigraph for the whole of modern philosophy of language. However, the text goes on to say that mind is higher than speech. The test question is the mental capabilities of animals. Do they 'know' pleasure, or truth?
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
     Full Idea: A simple way of approaching the modern notion of a predicate is this: given any sentence which contains a name, the result of dropping that name and leaving a gap in its place is a predicate. Very different from predicates in Aristotle and Kant.
     From: David Bostock (Intermediate Logic [1997], 3.2)
     A reaction: This concept derives from Frege. To get to grips with contemporary philosophy you have to relearn all sorts of basic words like 'predicate' and 'object'.
19. Language / F. Communication / 2. Assertion
In logic a proposition means the same when it is and when it is not asserted [Bostock]
     Full Idea: In Modus Ponens where the first premise is 'P' and the second 'P→Q', in the first premise P is asserted but in the second it is not. Yet it must mean the same in both premises, or it would be guilty of the fallacy of equivocation.
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
     A reaction: This is Geach's thought (leading to an objection to expressivism in ethics, that P means the same even if it is not expressed).
22. Metaethics / C. The Good / 3. Pleasure / c. Value of pleasure
The wise prefer good to pleasure; the foolish are drawn to pleasure by desire [Anon (Upan)]
     Full Idea: The wise prefer the good to the pleasant; the foolish, driven by fleshly desires, prefer the pleasant ot the good.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Katha')
     A reaction: If you consider appropriate diet, this is too obvious to be worth saying. The complication is that it is doubtful whether a life without pleasure is wholly good, and even the pleasure of food is not bad. Of two good foods, prefer the pleasant one.
25. Social Practice / E. Policies / 5. Education / c. Teaching
Let your teacher be a god to you [Anon (Upan)]
     Full Idea: Let your teacher be a god to you.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Taittiriya')
     A reaction: Yes indeed. The problem in the west is that we are committed to encouraging a critical and questioning attitude. A high value for knowledge must precede a high value for a teacher.
26. Natural Theory / B. Natural Kinds / 2. Defining Kinds
By knowing one piece of clay or gold, you know all of clay or gold [Anon (Upan)]
     Full Idea: By knowing one lump of clay, all things made of clay are known; by knowing a nugget of gold, all things made of gold are known.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Chandogya')
     A reaction: I can't think of a better basic definition of a natural kind. There is an inductive assumption, of course, which hits trouble when you meet fool's gold, or two different sorts of jade. But the concept of a natural kind is no more than this.
27. Natural Reality / E. Cosmology / 2. Eternal Universe
Originally there must have been just Existence, which could not come from non-existence [Anon (Upan)]
     Full Idea: In the beginning there was Existence, One only, without a second. Some say that in the beginning there was non-existence only, and that out of that the universe was born. But how could such a thing be? How could existence be born of non-existence?
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Chandogya')
     A reaction: A very rare instance of an argument in the Upanishads, arising out of a disagreement. The monotheistic religions have preferred to make God the eternal element, presumably because that raises his status, but is also explains the start as a decision.
28. God / A. Divine Nature / 1. God
Brahma, supreme god and protector of the universe, arose from the ocean of existence [Anon (Upan)]
     Full Idea: Out of the infinite ocean of existence arose Brahma, first-born and foremost among the gods. From him sprang the universe, and he became its protector.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Mundaka')
     A reaction: Brahma does not have eternal (or necessary) existence. Could Brahma cease to exist? I suppose we cannot ask what caused the appearance of Brahma? Is it part of a plan, or just luck, or some sort of necessity?
28. God / B. Proving God / 3. Proofs of Evidence / a. Cosmological Proof
Brahman is the Uncaused Cause [Anon (Upan)]
     Full Idea: Brahman is the Uncaused Cause.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Katha')
     A reaction: This precedes Aquinas (Idea 1430) by over two thousand years. The theological trick is to admit one Uncaused Cause, but somehow exclude further instances, such as my bicycle getting a puncture. Does this undermine the Principle of Sufficient Reason?
28. God / C. Attitudes to God / 2. Pantheism
Earth, food, fire, sun are all forms of Brahman [Anon (Upan)]
     Full Idea: Earth, food, fire, sun - all these that you worship - are forms of Brahman.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Chandogya')
     A reaction: In 'Taittiriya' food is named as the "chief of all things". Pantheism seems to arise from a desire that one's god should have every conceivable good, so in addition to power and knowledge, your god must keep you warm and healthy.
29. Religion / A. Polytheistic Religion / 3. Hinduism
The gods are not worshipped for their own sake, but for the sake of the Self [Anon (Upan)]
     Full Idea: It is not for the sake of the gods, my beloved, that the gods are worshipped, but for the sake of the Self (Atman).
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Brihadaranyaka')
     A reaction: There is an uneasy selfish streak in all religions, which conflicts with their exhorations to altruism, and to the love of the gods. It also occurs in the exhortation of Socrates to be virtuous. 'Pure' altruism seems only to arise in the 18th century.
A man with desires is continually reborn, until his desires are stilled [Anon (Upan)]
     Full Idea: A man acts according to desires; after death he reaps the harvest of his deeds, and returns again to the world of action. Thus he who has desires continues subject to rebirth, but he in who desire is stilled suffers no rebirth.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Brihadaranyaka')
     A reaction: I greatly prefer the Stoic idea (Idea 3066) that we should live according to nature, to this perverse longing to completely destroy our own nature and become something we are not. Play the cards you are dealt, which include desires.
Damayata - be self-controlled! Datta - be charitable! Dayadhwam - be compassionate! [Anon (Upan)]
     Full Idea: The storm-clouds thunder: Da! Da! Da! Damayata - be self-controlled! Datta - be charitable! Dayadhwam - be compassionate!
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Brihadaranyaka')
     A reaction: Compassion seems to imply charity, so it comes down to 'Be self-controlled and compassionate'. Only the wildest romantic could be against self-control. Only Nietzsche could be against compassion (Idea 4425).
Those ignorant of Atman return as animals or plants, according to their merits [Anon (Upan)]
     Full Idea: Of those ignorant of the Self (Atman), some enter into beings possessed of wombs, others enter into plants - according to their deeds and the growth of their intelligence.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Katha')
     A reaction: "I sigh and sigh, and wish I were a tree" wrote George Herbert. You probably need the snobbery of the Indian caste system to appreciate the horrors of low rebirth. I quite fancy being a dolphin, but a tulip would be all right.
29. Religion / D. Religious Issues / 1. Religious Commitment / a. Religious Belief
Charity and ritual observance distract from the highest good of religion [Anon (Upan)]
     Full Idea: Considering religion to be observance of rituals and performance of acts of charity, the deluded remain ignorant of the highest good.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Mundaka')
     A reaction: An important reminder. In all the great religious texts the exhortation to love and charity is a minor aspect. The point is to live on a spiritual plain, attempting to relate the world of God/the gods. Daily life is either secondary or irrelevant.
29. Religion / D. Religious Issues / 1. Religious Commitment / e. Fideism
Do not seek to know Brahman by arguments, for arguments are idle and vain [Anon (Upan)]
     Full Idea: Do not seek to know Brahman by arguments, for arguments are idle and vain.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Brihadaranyaka')
     A reaction: In the end all the religions seem to gravitate towards fideism and away from reasoned argument. The Catholic Church may be the last bastion of rational theology. Islam (10th cent), Protestantism (16th) and Judaism (17th) all rejected philosophy.
29. Religion / D. Religious Issues / 2. Immortality / b. Soul
The immortal in us is the part that never sleeps, and shapes our dreams [Anon (Upan)]
     Full Idea: That which is awake in us even while we sleep, shaping in dream the objects of our desire - that indeed is pure, that is Brahman, and that verily is called the Immortal.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Katha')
     A reaction: That is a more helpful view of what the soul might be than anything found in Christian theology. It makes it the essence of the everyday Self. It is left with the difficulty of lacking individuality, and being of limited interest to my wider Self.
The immortal Self and the sad individual self are like two golden birds perched on one tree [Anon (Upan)]
     Full Idea: Like two birds of golden plumage, the individual self and the immortal Self perch on the branches of the same tree. The individual self, deluded by forgetfulness of his identity with the divine self, bewildered by his ego, grieves and is sad.
     From: Anon (Upan) (The Upanishads [c.950 BCE], 'Mundaka')
     A reaction: Hinduism gives a much clearer and bolder picture of the soul than Christianity does. I don't see much consolation in the immortality of the wonderful Self, if my individual self is doomed to misery and extinction. Which one is me?