Combining Philosophers

All the ideas for Mahavastu, John von Neumann and Aeschylus

unexpand these ideas     |    start again     |     specify just one area for these philosophers


12 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Von Neumann defines each number as the set of all smaller numbers [Neumann, by Blackburn]
     Full Idea: Von Neumann defines each number as the set of all smaller numbers.
     From: report of John von Neumann (works [1935]) by Simon Blackburn - Oxford Dictionary of Philosophy p.280
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is not self-evident, and seems too strong [Lavine on Neumann]
     Full Idea: Von Neumann's Limitation of Size axiom is not self-evident, and he himself admitted that it seemed too strong.
     From: comment on John von Neumann (An Axiomatization of Set Theory [1925]) by Shaughan Lavine - Understanding the Infinite VII.1
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Von Neumann wanted mathematical functions to replace sets [Neumann, by Benardete,JA]
     Full Idea: Von Neumann suggested that functions be pressed into service to replace sets.
     From: report of John von Neumann (works [1935]) by José A. Benardete - Metaphysics: the logical approach Ch.23
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Von Neumann treated cardinals as a special sort of ordinal [Neumann, by Hart,WD]
     Full Idea: Von Neumann's decision was to start with the ordinals and to treat cardinals as a special sort of ordinal.
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by William D. Hart - The Evolution of Logic 3
     A reaction: [see Hart 73-74 for an explication of this]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Von Neumann defined ordinals as the set of all smaller ordinals [Neumann, by Poundstone]
     Full Idea: At age twenty, Von Neumann devised the formal definition of ordinal numbers that is used today: an ordinal number is the set of all smaller ordinal numbers.
     From: report of John von Neumann (works [1935]) by William Poundstone - Prisoner's Dilemma 02 'Sturm'
     A reaction: I take this to be an example of an impredicative definition (not predicating something new), because it uses 'ordinal number' in the definition of ordinal number. I'm guessing the null set gets us started.
A von Neumann ordinal is a transitive set with transitive elements [Neumann, by Badiou]
     Full Idea: In Von Neumann's definition an ordinal is a transitive set in which all of the elements are transitive.
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Alain Badiou - Briefings on Existence 11
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / g. Von Neumann numbers
For Von Neumann the successor of n is n U {n} (rather than {n}) [Neumann, by Maddy]
     Full Idea: For Von Neumann the successor of n is n U {n} (rather than Zermelo's successor, which is {n}).
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Penelope Maddy - Naturalism in Mathematics I.2 n8
Von Neumann numbers are preferred, because they continue into the transfinite [Maddy on Neumann]
     Full Idea: Von Neumann's version of the natural numbers is in fact preferred because it carries over directly to the transfinite ordinals.
     From: comment on John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Penelope Maddy - Naturalism in Mathematics I.2 n9
Each Von Neumann ordinal number is the set of its predecessors [Neumann, by Lavine]
     Full Idea: Each Von Neumann ordinal number is the set of its predecessors. ...He had shown how to introduce ordinal numbers as sets, making it possible to use them without leaving the domain of sets.
     From: report of John von Neumann (On the Introduction of Transfinite Numbers [1923]) by Shaughan Lavine - Understanding the Infinite V.3
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
All the axioms for mathematics presuppose set theory [Neumann]
     Full Idea: There is no axiom system for mathematics, geometry, and so forth that does not presuppose set theory.
     From: John von Neumann (An Axiomatization of Set Theory [1925]), quoted by Stewart Shapiro - Foundations without Foundationalism 8.2
     A reaction: Von Neumann was doubting whether set theory could have axioms, and hence the whole project is doomed, and we face relativism about such things. His ally was Skolem in this.
25. Social Practice / D. Justice / 2. The Law / b. Rule of law
The 'Eumenides' of Aeschylus shows blood feuds replaced by law [Aeschylus, by Grayling]
     Full Idea: The 'Eumenides' of Aeschylus tells how the old rule of revenge and blood feud was replaced by a due process of law before a civil jury.
     From: report of Aeschylus (The Eumenides [c.458 BCE]) by A.C. Grayling - What is Good? Ch.2
     A reaction: Compare Idea 1659, where this revolution is attributed to Protagoras (a little later than Aeschylus). I take the rule of law and of society to be above all the rule of reason, because the aim is calm objectivity instead of emotion.
28. God / B. Proving God / 3. Proofs of Evidence / e. Miracles
The Buddha made flowers float in the air, to impress people, and make them listen [Mahavastu]
     Full Idea: When the young Brahmin threw her two lotuses, they stood suspended in the air. This was one of the miracles by which the Buddhas impress people, to make them listen to the truth.
     From: Mahavastu (The Great Event [c.200], I.231-9)
     A reaction: Presumably this is the reason that Jesus did miracles. It is hard to spot the truth among the myriad of lies, if there is no supporting miracle to give authority to the speaker.