Combining Philosophers

All the ideas for Melvin Fitting, Crates (Theb) and Georg Kreisel

unexpand these ideas     |    start again     |     specify just one area for these philosophers


12 ideas

1. Philosophy / C. History of Philosophy / 2. Ancient Philosophy / c. Classical philosophy
Crates lived in poverty, and treated his whole life as a joke [Crates of Thebes, by Plutarch]
     Full Idea: Crates, with his bag and threadbare cloak, spent his whole life laughing and joking as though he were on holiday.
     From: report of Crates (Theb) (fragments/reports [c.325 BCE]) by Plutarch - 30: Quiet of Mind 266e
     A reaction: Crates sounds a little less alarming than Diogenes, while living a similar life. Was Crates the first ancestor of post-modernism?
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / a. Philosophy as worldly
Everyone should study philosophy until they see all people in the same light [Crates of Thebes, by Diog. Laertius]
     Full Idea: A man should study philosophy up to the point of looking on generals and donkey-drivers in the same light.
     From: report of Crates (Theb) (fragments/reports [c.325 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 06.Cr.9
     A reaction: This seems to reject Aristote's idea that some people are clearly superior to others.
4. Formal Logic / E. Nonclassical Logics / 8. Intensional Logic
If terms change their designations in different states, they are functions from states to objects [Fitting]
     Full Idea: The common feature of every designating term is that designation may change from state to state - thus it can be formalized by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3)
     A reaction: Specifying the objects sounds OK, but specifying states sounds rather tough.
Intensional logic adds a second type of quantification, over intensional objects, or individual concepts [Fitting]
     Full Idea: To first order modal logic (with quantification over objects) we can add a second kind of quantification, over intensions. An intensional object, or individual concept, will be modelled by a function from states to objects.
     From: Melvin Fitting (Intensional Logic [2007], 3.3)
4. Formal Logic / E. Nonclassical Logics / 9. Awareness Logic
Awareness logic adds the restriction of an awareness function to epistemic logic [Fitting]
     Full Idea: Awareness logic enriched Hintikka's epistemic models with an awareness function, mapping each state to the set of formulas we are aware of at that state. This reflects some bound on the resources we can bring to bear.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
     A reaction: [He cites Fagin and Halpern 1988 for this]
4. Formal Logic / E. Nonclassical Logics / 10. Justification Logics
Justication logics make explicit the reasons for mathematical truth in proofs [Fitting]
     Full Idea: In justification logics, the logics of knowledge are extended by making reasons explicit. A logic of proof terms was created, with a semantics. In this, mathematical truths are known for explicit reasons, and these provide a measure of complexity.
     From: Melvin Fitting (Intensional Logic [2007], 3.6.1)
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Classical logic is deliberately extensional, in order to model mathematics [Fitting]
     Full Idea: Mathematics is typically extensional throughout (we write 3+2=2+3 despite the two terms having different meanings). ..Classical first-order logic is extensional by design since it primarily evolved to model the reasoning of mathematics.
     From: Melvin Fitting (Intensional Logic [2007], §1)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ-abstraction disambiguates the scope of modal operators [Fitting]
     Full Idea: λ-abstraction can be used to abstract and disambiguate a predicate. De re is [λx◊P(x)](f) - f has the possible-P property - and de dicto is ◊[λxP(x)](f) - possibly f has the P-property. Also applies to □.
     From: Melvin Fitting (Intensional Logic [2007], §3.3)
     A reaction: Compare the Barcan formula. Originated with Church in the 1930s, and Carnap 1947, but revived by Stalnaker and Thomason 1968. Because it refers to the predicate, it has a role in intensional versions of logic, especially modal logic.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Gödel showed that the syntactic approach to the infinite is of limited value [Kreisel]
     Full Idea: Usually Gödel's incompleteness theorems are taken as showing a limitation on the syntactic approach to an understanding of the concept of infinity.
     From: Georg Kreisel (Hilbert's Programme [1958], 05)
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
The study of mathematical foundations needs new non-mathematical concepts [Kreisel]
     Full Idea: It is necessary to use non-mathematical concepts, i.e. concepts lacking the precision which permit mathematical manipulation, for a significant approach to foundations. We currently have no concepts of this kind which we can take seriously.
     From: Georg Kreisel (Hilbert's Programme [1958], 06)
     A reaction: Music to the ears of any philosopher of mathematics, because it means they are not yet out of a job.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Definite descriptions pick out different objects in different possible worlds [Fitting]
     Full Idea: Definite descriptions pick out different objects in different possible worlds quite naturally.
     From: Melvin Fitting (Intensional Logic [2007], 3.4)
     A reaction: A definite description can pick out the same object in another possible world, or a very similar one, or an object which has almost nothing in common with the others.
27. Natural Reality / C. Space / 3. Points in Space
The natural conception of points ducks the problem of naming or constructing each point [Kreisel]
     Full Idea: In analysis, the most natural conception of a point ignores the matter of naming the point, i.e. how the real number is represented or by what constructions the point is reached from given points.
     From: Georg Kreisel (Hilbert's Programme [1958], 13)
     A reaction: This problem has bothered me. There are formal ways of constructing real numbers, but they don't seem to result in a name for each one.