Combining Philosophers

All the ideas for Novalis, Graham Priest and Bryan van Norden

unexpand these ideas     |    start again     |     specify just one area for these philosophers


72 ideas

1. Philosophy / B. History of Ideas / 2. Ancient Thought
The Dao (Way) first means the road, and comes to mean the right way to live [Norden]
     Full Idea: The 'Dao' (tr 'Way) has five meanings: 1) path or road, 2) mode of doing something, 3) account of how to do something, 4) the right way to live, and 5) the ultimate metaphysical entity responsible for nature, and how it should be.
     From: Bryan van Norden (Intro to Classical Chinese Philosophy [2011], 1.III)
     A reaction: [compressed] So it is essentially metaphorical, just like the English 'way to do a thing'. Number 5 seems a rather large leap from the others, and most discussion seems to centre on number 4. The Chinese hoped for consensus on the Dao.
1. Philosophy / C. History of Philosophy / 1. History of Philosophy
The history of philosophy is just experiments in how to do philosophy [Novalis]
     Full Idea: The history of philosophy up to now is nothing but a history of attempts to discover how to do philosophy.
     From: Novalis (Logological Fragments I [1798], 01)
     A reaction: I take post-Fregean analytic metaphysics to be another experiment in how to do philosophy. I suspect that the experiment of Husserl, Heidegger, Derrida etc has been a failure.
1. Philosophy / D. Nature of Philosophy / 1. Philosophy
Philosophy only begins when it studies itself [Novalis]
     Full Idea: All philosophy begins where philosophizing philosophises itself.
     From: Novalis (Logological Fragments I [1798], 79)
     A reaction: The modern trend for doing metaphilosophy strikes me as wholly admirable, though I suspect that the enemies of philosophy (who are legion) see it as a decadence.
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / a. Philosophy as worldly
Philosophy is homesickness - the urge to be at home everywhere [Novalis]
     Full Idea: Philosophy is actually homesickness - the urge to be everywhere at home.
     From: Novalis (General Draft [1799], 45)
     A reaction: The idea of home [heimat] is powerful in German culture. The point of romanticism was seen as largely concerning restless souls like Byron and his heroes, who do not feel at home. Hence ironic detachment.
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / c. Philosophy as generalisation
The highest aim of philosophy is to combine all philosophies into a unity [Novalis]
     Full Idea: He attains the maximum of a philosopher who combines all philosophies into a single philosophy
     From: Novalis (Logological Fragments II [1798], 31)
     A reaction: I have found the epigraph for my big book! Recently a few narrowly analytical philosophers have attempted big books about everything (Sider, Heil, Chalmers), and they get a huge round of applause from me.
Philosophy relies on our whole system of learning, and can thus never be complete [Novalis]
     Full Idea: Now all learning is connected - thus philosophy will never be complete. Only in the complete system of all learning will philosophy be truly visible.
     From: Novalis (Logological Fragments II [1798], 39)
     A reaction: Philosophy is evidently the unifying subject, which reveals the point of all the other subjects. It matches my maxim that 'science is the servant of philosophy'.
1. Philosophy / D. Nature of Philosophy / 5. Aims of Philosophy / d. Philosophy as puzzles
Philosophers feed on problems, hoping they are digestible, and spiced with paradox [Novalis]
     Full Idea: The philosopher lives on problems as the human being does on food. An insoluble problem is an indigestible food. What spice is to food, the paradoxical is to problems.
     From: Novalis (Logological Fragments II [1798], 09)
     A reaction: Novalis would presumably have disliked Hegel's dialectic, where the best food seems to be the indigestible.
1. Philosophy / E. Nature of Metaphysics / 3. Metaphysical Systems
Philosophy aims to produce a priori an absolute and artistic world system [Novalis]
     Full Idea: Philosophy ...is the art of producing all our conceptions according to an absolute, artistic idea and of developing the thought of a world system a priori out of the depths of our spirit.
     From: Novalis (Logological Fragments II [1798], 19)
     A reaction: A lovely statement of the dream of building world systems by pure thought - embodying perfectly the view of philosophy despised by logical positivists and modern logical metaphysicians. The Novalis view will never die! I like 'artistic'.
1. Philosophy / H. Continental Philosophy / 3. Hermeneutics
The hermeneutic circle is either within the text, or between text and biased reader [Norden]
     Full Idea: The first type of hermeneutic circle operates inside the text, studying relationships between sentences. …The second type is between the text and the reader, …who brings assumptions about what it means.
     From: Bryan van Norden (Intro to Classical Chinese Philosophy [2011], App A.I)
     A reaction: The first kind is an essential aspect of reading well. Readers are biased, but I get very tired of those who do nothing but search for bias, and ignore the truth a text has to offer. If everything is bias, intellectual life is dead.
Heremeneutics is either 'faith' (examining truth) or 'suspicion' (looking for hidden motives) [Norden]
     Full Idea: A 'hermeneutics of faith' treat a text as a candidate for truth. ….A 'hermeneutics of suspicion' looks not for truth but for explanations of why someone makes certain claims, …particularly to serve their ulterior interests.
     From: Bryan van Norden (Intro to Classical Chinese Philosophy [2011], App I.1)
     A reaction: As far as I can see, the suspicious approach was a legitimate development in sociology, which studies the sources of ideas, but is absurdly offered by some philosophers as a total replacement of the faith approach.
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Someone standing in a doorway seems to be both in and not-in the room [Priest,G, by Sorensen]
     Full Idea: Priest says there is room for contradictions. He gives the example of someone in a doorway; is he in or out of the room. Given that in and out are mutually exclusive and exhaustive, and neither is the default, he seems to be both in and not in.
     From: report of Graham Priest (What is so bad about Contradictions? [1998]) by Roy Sorensen - Vagueness and Contradiction 4.3
     A reaction: Priest is a clever lad, but I don't think I can go with this. It just seems to be an equivocation on the word 'in' when applied to rooms. First tell me the criteria for being 'in' a room. What is the proposition expressed in 'he is in the room'?
3. Truth / A. Truth Problems / 3. Value of Truth
If man sacrifices truth he sacrifices himself, by acting against his own convictions [Novalis]
     Full Idea: Man has his being in truth - if he sacrifices truth he sacrifices himself. Whoever betrays truth betrays himself. It is not a question of lying - but of acting against one's conviction.
     From: Novalis (Miscellaneous Observations [1798], 038)
     A reaction: Does he condone lying here, as long as you don't believe the lie? We would call it loss of integrity.
3. Truth / E. Pragmatic Truth / 1. Pragmatic Truth
Delusion and truth differ in their life functions [Novalis]
     Full Idea: The distinction between delusion and truth lies in the difference in their life functions.
     From: Novalis (Miscellaneous Observations [1798], 008)
     A reaction: Pure pragmatism, it seems. We might expect doubts about objective truth from a leading light of the Romantic movement.
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
A logic is 'relevant' if premise and conclusion are connected, and 'paraconsistent' allows contradictions [Priest,G, by Friend]
     Full Idea: Priest and Routley have developed paraconsistent relevant logic. 'Relevant' logics insist on there being some sort of connection between the premises and the conclusion of an argument. 'Paraconsistent' logics allow contradictions.
     From: report of Graham Priest (works [1998]) by Michèle Friend - Introducing the Philosophy of Mathematics 6.8
     A reaction: Relevance blocks the move of saying that a falsehood implies everything, which sounds good. The offer of paraconsistency is very wicked indeed, and they are very naughty boys for even suggesting it.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
     Full Idea: Free logic is an unusual example of a non-classical logic which is first-order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], Pref)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
     Full Idea: X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets, the set of all the n-tuples with its first member in X1, its second in X2, and so on.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.0)
<a,b&62; is a set whose members occur in the order shown [Priest,G]
     Full Idea: <a,b> is a set whose members occur in the order shown; <x1,x2,x3, ..xn> is an 'n-tuple' ordered set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
     Full Idea: a ∈ X means that a is a member of the set X, that is, a is one of the objects in X. a ∉ X indicates that a is not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
     Full Idea: {x; A(x)} indicates a set of objects which satisfy the condition A(x).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
     Full Idea: {a1, a2, ...an} indicates that the set comprises of just those objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
Φ indicates the empty set, which has no members [Priest,G]
     Full Idea: Φ indicates the empty set, which has no members
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
     Full Idea: {a} is the 'singleton' set of a, not to be confused with the object a itself.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
     Full Idea: X⊂Y means set X is a 'proper subset' of set Y (if and only if all of its members are members of Y, but some things in Y are not in X)
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X⊆Y means set X is a 'subset' of set Y [Priest,G]
     Full Idea: X⊆Y means set X is a 'subset' of set Y (if and only if all of its members are members of Y).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X = Y means the set X equals the set Y [Priest,G]
     Full Idea: X = Y means the set X equals the set Y, which means they have the same members (i.e. X⊆Y and Y⊆X).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
     Full Idea: X ∩ Y indicates the 'intersection' of sets X and Y, which is a set containing just those things that are in both X and Y.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
     Full Idea: X ∪ Y indicates the 'union' of sets X and Y, which is a set containing just those things that are in X or Y (or both).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
     Full Idea: Y - X indicates the 'relative complement' of X with respect to Y, that is, all the things in Y that are not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'relative complement' is things in the second set not in the first [Priest,G]
     Full Idea: The 'relative complement' of one set with respect to another is the things in the second set that aren't in the first.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
     Full Idea: The 'intersection' of two sets is a set containing the things that are in both sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
     Full Idea: The 'union' of two sets is a set containing all the things in either of the sets
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
     Full Idea: The 'induction clause' says that whenever one constructs more complex formulas out of formulas that have the property P, the resulting formulas will also have that property.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.2)
A 'singleton' is a set with only one member [Priest,G]
     Full Idea: A 'singleton' is a set with only one member.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A 'member' of a set is one of the objects in the set [Priest,G]
     Full Idea: A 'member' of a set is one of the objects in the set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
     Full Idea: An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
     Full Idea: A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'set' is a collection of objects [Priest,G]
     Full Idea: A 'set' is a collection of objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
The 'empty set' or 'null set' has no members [Priest,G]
     Full Idea: The 'empty set' or 'null set' is a set with no members.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
     Full Idea: A set is a 'subset' of another set if all of its members are in that set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'proper subset' is smaller than the containing set [Priest,G]
     Full Idea: A set is a 'proper subset' of another set if some things in the large set are not in the smaller set
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
     Full Idea: The empty set Φ is a subset of every set (including itself).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Logic (the theory of relations) should be applied to mathematics [Novalis]
     Full Idea: Ought not logic, the theory of relations, be applied to mathematics?
     From: Novalis (Logological Fragments II [1798], 38)
     A reaction: Bolzano was 19 when his was written. I presume Novalis would have been excited by set theory (even though he was a hyper-romantic).
5. Theory of Logic / L. Paradox / 1. Paradox
Typically, paradoxes are dealt with by dividing them into two groups, but the division is wrong [Priest,G]
     Full Idea: A natural principle is the same kind of paradox will have the same kind of solution. Standardly Ramsey's first group are solved by denying the existence of some totality, and the second group are less clear. But denial of the groups sink both.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §5)
     A reaction: [compressed] This sums up the argument of Priest's paper, which is that it is Ramsey's division into two kinds (see Idea 13334) which is preventing us from getting to grips with the paradoxes. Priest, notoriously, just lives with them.
5. Theory of Logic / L. Paradox / 2. Aporiai
A problem is a solid mass, which the mind must break up [Novalis]
     Full Idea: A problem is a solid, synthetic mass which is broken up by means of the penetrating power of the mind.
     From: Novalis (Logological Fragments I [1798], 04)
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / b. König's paradox
The 'least indefinable ordinal' is defined by that very phrase [Priest,G]
     Full Idea: König: there are indefinable ordinals, and the least indefinable ordinal has just been defined in that very phrase. (Recall that something is definable iff there is a (non-indexical) noun-phrase that refers to it).
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: Priest makes great subsequent use of this one, but it feels like a card trick. 'Everything indefinable has now been defined' (by the subject of this sentence)? König, of course, does manage to pick out one particular object.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
'x is a natural number definable in less than 19 words' leads to contradiction [Priest,G]
     Full Idea: Berry: if we take 'x is a natural number definable in less than 19 words', we can generate a number which is and is not one of these numbers.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: [not enough space to spell this one out in full]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / d. Richard's paradox
By diagonalization we can define a real number that isn't in the definable set of reals [Priest,G]
     Full Idea: Richard: φ(x) is 'x is a definable real number between 0 and 1' and ψ(x) is 'x is definable'. We can define a real by diagonalization so that it is not in x. It is and isn't in the set of reals.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: [this isn't fully clear here because it is compressed]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The least ordinal greater than the set of all ordinals is both one of them and not one of them [Priest,G]
     Full Idea: Burali-Forti: φ(x) is 'x is an ordinal', and so w is the set of all ordinals, On; δ(x) is the least ordinal greater than every member of x (abbreviation: log(x)). The contradiction is that log(On)∈On and log(On)∉On.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §2)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The next set up in the hierarchy of sets seems to be both a member and not a member of it [Priest,G]
     Full Idea: Mirimanoff: φ(x) is 'x is well founded', so that w is the cumulative hierarchy of sets, V; &delta(x) is just the power set of x, P(x). If x⊆V, then V∈V and V∉V, since δ(V) is just V itself.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §2)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you know that a sentence is not one of the known sentences, you know its truth [Priest,G]
     Full Idea: In the family of the Liar is the Knower Paradox, where φ(x) is 'x is known to be true', and there is a set of known things, Kn. By knowing a sentence is not in the known sentences, you know its truth.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §4)
     A reaction: [mostly my wording]
There are Liar Pairs, and Liar Chains, which fit the same pattern as the basic Liar [Priest,G]
     Full Idea: There are liar chains which fit the pattern of Transcendence and Closure, as can be seen with the simplest case of the Liar Pair.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §4)
     A reaction: [Priest gives full details] Priest's idea is that Closure is when a set is announced as complete, and Transcendence is when the set is forced to expand. He claims that the two keep coming into conflict.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Whoever first counted to two must have seen the possibility of infinite counting [Novalis]
     Full Idea: Whoever first understood how to count to two, even if he still found it difficult to keep on counting, saw nonetheless the possibility of infinite counting according to the same laws.
     From: Novalis (Logological Fragments I [1798], 84)
     A reaction: Presumably it is the discerning of the 'law' which triggers this. Is the key concept 'addition' or 'successor' (or are those the same?).
7. Existence / A. Nature of Existence / 3. Being / h. Dasein (being human)
Novalis thought self-consciousness cannot disclose 'being', because we are temporal creatures [Novalis, by Pinkard]
     Full Idea: Novalis came to think that the kind of existence , or 'being', that is disclosed in self-consciousness remains, as it were, forever out of our reach because of the kind of temporal creatures we are.
     From: report of Novalis (Logological Fragments I [1798]) by Terry Pinkard - German Philosophy 1760-1860 06
     A reaction: It looks here as if Novalis kicked Heidegger's Dasein into the long grass before it even got started, but maybe they have different notions of 'being', with Novalis seeking timeless being, and Heidegger, influenced by Bergson, accepting temporality.
9. Objects / D. Essence of Objects / 3. Individual Essences
Refinement of senses increasingly distinguishes individuals [Novalis]
     Full Idea: The more our senses are refined, the more capable they become of distinguishing between individuals. The highest sense would be the highest receptivity to particularity in human nature.
     From: Novalis (Miscellaneous Observations [1798], 072)
     A reaction: I adore this idea!! It goes into the collection of support I am building for individual essences, against the absurd idea of kinds as essences (when they are actually categorisations). It also accompanies particularism in ethics.
11. Knowledge Aims / C. Knowing Reality / 3. Idealism / d. Absolute idealism
Poetry is true idealism, and the self-consciousness of the universe [Novalis]
     Full Idea: Poetry is true idealism - contemplation of the world as contemplation of a large mind - self-consciousness of the universe.
     From: Novalis (Logological Fragments I [1798], vol 3 p.640), quoted by Ernst Behler - Early German Romanticism
     A reaction: It looks like the step from Fichte's idealism to the Absolute is poetry, which embraces the ultimate Spinozan substance through imagination. Or something...
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Experiences tests reason, and reason tests experience [Novalis]
     Full Idea: Experience is the test of the rational - and vice versa.
     From: Novalis (Miscellaneous Observations [1798], 010)
     A reaction: A wonderful remark. Surely we can't ignore our need to test claims of pure logic by filling in the variables with concrete instances, to assess validity? And philosophy without examples is doomed to be abstract waffle. Coherence is the combined aim.
12. Knowledge Sources / D. Empiricism / 5. Empiricism Critique
Empiricists are passive thinkers, given their philosophy by the external world and fate [Novalis]
     Full Idea: An empiricist is one whose way of thinking is an effect of the external world and of fate - the passive thinker - to whom his philosophy is given.
     From: Novalis (Teplitz Fragments [1798], 33)
     A reaction: Novalis goes on to enthuse about 'magical idealism', so he rejects empiricism. This is an early attack on the Myth of the Given, found in Sellars and McDowell.
14. Science / B. Scientific Theories / 1. Scientific Theory
General statements about nature are not valid [Novalis]
     Full Idea: General statements are not valid in the study of nature.
     From: Novalis (Last Fragments [1800], 17)
     A reaction: This is his striking obsession with the particularity and fine detail of nature. Alexander von Humbolt was exploring nature in S.America in this year. It sounds wrong about physics, but possibly right about biology.
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Desire for perfection is an illness, if it turns against what is imperfect [Novalis]
     Full Idea: An absolute drive toward perfection and completeness is an illness, as soon as it shows itself to be destructive and averse toward the imperfect, the incomplete.
     From: Novalis (General Draft [1799], 33)
     A reaction: Deep and true! Novalis seems to be a particularist - hanging on to the fine detail of life, rather than being immersed in the theory. These are the philosophers who also turn to literature.
17. Mind and Body / A. Mind-Body Dualism / 8. Dualism of Mind Critique
The whole body is involved in the formation of thoughts [Novalis]
     Full Idea: In the formation of thoughts all parts of the body seem to me to be working together.
     From: Novalis (Last Fragments [1800], 20)
     A reaction: I can only think that Spinoza must be behind this thought, or La Mettrie. It seems a strikingly unusual intuition for its time, when almost everyone takes a spiritual sort of dualism for granted.
17. Mind and Body / E. Mind as Physical / 1. Physical Mind
The seat of the soul is where our inner and outer worlds interpenetrate [Novalis]
     Full Idea: The seat of the soul is the point where the inner and the outer worlds touch. Wherever they penetrate each other - it is there at every point of penetration.
     From: Novalis (Miscellaneous Observations [1798], 020)
     A reaction: I surmise that Spinoza's dual-aspect monism is behind this interesting remark. See the related idea from Schopenhauer.
18. Thought / E. Abstraction / 2. Abstracta by Selection
Everything is a chaotic unity, then we abstract, then we reunify the world into a free alliance [Novalis]
     Full Idea: Before abstraction everything is one - but one as chaos is - after abstraction everything is again unified - but in a free alliance of independent, self-determined beings. A crowd has become a society - a chaos is transformed into a manifold world.
     From: Novalis (Miscellaneous Observations [1798], 094)
     A reaction: Personally I take (unfashionably) psychological abstraction to one of the key foundations of human thought, so I love this idea, which gives a huge picture of how the abstracting mind relates to reality.
19. Language / F. Communication / 4. Private Language
Every person has his own language [Novalis]
     Full Idea: Every person has his own language. Language is the expression of the spirit.
     From: Novalis (Logological Fragments I [1798], 91)
     A reaction: Nice to see someone enthusiastically affirming what was later famously denied, and maybe even disproved.
21. Aesthetics / A. Aesthetic Experience / 5. Natural Beauty
Only self-illuminated perfect individuals are beautiful [Novalis]
     Full Idea: Everything beautiful is a self-illuminated, perfect individual.
     From: Novalis (Miscellaneous Observations [1798], 101)
     A reaction: It is a commonplace to describe something beautiful as being 'perfect'. Unfinished masterpieces are interesting exceptions. Are only 'individuals' beautiful? Is unity a necessary condition of beauty? Bad art fails to be self-illuminated.
22. Metaethics / A. Ethics Foundations / 1. Nature of Ethics / b. Defining ethics
Morality and philosophy are mutually dependent [Novalis]
     Full Idea: Without philosophy there is no true morality, and without morality no philosophy.
     From: Novalis (Logological Fragments I [1798], 21)
     A reaction: Challenging! Maybe unthinking people drift in a sea of vague untethered morality, and people who seem to have a genuine moral strength are always rooted in some sort of philosophy. Maybe. Is the passion for philosophy a moral passion?
23. Ethics / F. Existentialism / 7. Existential Action
Life isn't given to us like a novel - we write the novel [Novalis]
     Full Idea: Life must not be a novel that is given to us, but one that is made by us.
     From: Novalis (Logological Fragments I [1798], 99)
     A reaction: The roots of existentialism are in the Romantic movement. Sartre seems to have taken this idea literally.
24. Political Theory / C. Ruling a State / 2. Leaders / b. Monarchy
The whole point of a monarch is that we accept them as a higher-born, ideal person [Novalis]
     Full Idea: The distinguishing character of the monarchy lies precisely in the fact of belief in a higher-born person, of voluntary acceptance of an ideal person. I cannot choose a leader from among my peers.
     From: Novalis (Fath and Love, or the King and Queen [1798], 18)
     A reaction: Novalis was passionately devoted to the new king and queen of Prussia, only a few years after the French Revolution. This attitude seems to me unchanged among monarchists in present day Britain. Genetics has undermined 'higher-born'.
25. Social Practice / E. Policies / 5. Education / c. Teaching
If the pupil really yearns for the truth, they only need a hint [Novalis]
     Full Idea: If a pupil genuinely desires truth is requires only a hint to show him how to find what he is seeking.
     From: Novalis (Logological Fragments I [1798], 02)
     A reaction: The tricky job for the teacher or supervisor is assessing whether the pupil genuinely desires truth, or needs motivating.
25. Social Practice / E. Policies / 5. Education / d. Study of history
Persons are shaped by a life history; splendid persons are shaped by world history [Novalis]
     Full Idea: What is it that shapes a person if not his life history? And in the same way a splendid person is shaped by nothing other than world history. Many people live better in the past and in the future than in the present.
     From: Novalis (Last Fragments [1800], 15)
     A reaction: Clearly there is a lot to be said for splendid people who live entirely in the present (such as jazz musicians). Some people do have an awesomely wide historical perspective on their immediate lives. Palaeontology is not the master discipline though!
26. Natural Theory / A. Speculations on Nature / 1. Nature
Nature is a whole, and its individual parts cannot be wholly understood [Novalis]
     Full Idea: Nature is a whole - in which each part in itself can never be wholly understood.
     From: Novalis (Last Fragments [1800], 18)
     A reaction: This doesn't seem right when studying some item in a laboratory, but it seems undeniable when you consider the history and future of each item.
26. Natural Theory / A. Speculations on Nature / 4. Mathematical Nature
The basic relations of nature are musical [Novalis]
     Full Idea: Musical relations seem to me to be actually the basic relations of nature.
     From: Novalis (Last Fragments [1800], 10)
     A reaction: Novalis shows no signs of being a pythagorean, and then suddenly comes out with this. I suppose if you love music, this thought should float into your mind at regular intervals, because the power of music is so strong. Does he mean ratios?
29. Religion / D. Religious Issues / 1. Religious Commitment / a. Religious Belief
Religion needs an intermediary, because none of us can connect directly to a godhead [Novalis]
     Full Idea: Nothing is more indispensable for true religious feeling than an intermediary - which connects us to the godhead. The human being is absolutely incapable of sustaining an immediate relation with this.
     From: Novalis (Miscellaneous Observations [1798], 073)
     A reaction: I take this to be a defence of priests and organised religion, and an implied attack on protestants who give centrality to private prayer and conscience.